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Abstract

This paper studies the drivers of the US real exchange rate (RER), with a particular

focus on its comovement with net trade (NT) flows. We consider the entire spectrum

of frequencies, as the low-frequency variation accounts for 61 and 64 percent of the

unconditional variance of the RER and NT, respectively. We develop a generalization

of the standard international business cycle model that successfully rationalizes the

joint dynamics of the RER and NT while accounting for the major puzzles of the

RER. We find that, while financial shocks are necessary to capture high frequency

variation in the RER, trade shocks are essential for the lower frequency fluctuations.
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1 Introduction

The real exchange rate (RER)
1
and net trade (NT)

2
flows are central variables for the transmission

of business cycles across countries. While the RER reflects the prices that clear the international

goods and asset markets, NT flows are the quantities traded in those markets. A comprehen-

sive theory of international business cycles should thus capture both the RER and NT dynamics,

particularly in the context of general equilibrium. However, the literature has predominantly

focused on understanding RER dynamics, with limited attention given to NT.

The emphasis on the RER stems from the challenge that standard models face in explaining its

behavior and the lack of connection with macro fundamentals at the high frequency – a feature

known as exchange rate disconnect (Obstfeld and Rogoff, 2000). To explain the disconnect, a

recent strand of the literature has proposed a theory relying on shocks in financial markets that

goes a long way in explaining the disconnect. (Devereux and Engel, 2002; Gabaix and Maggiori,

2015; Itskhoki and Mukhin, 2021a). However, despite its success in addressing the disconnect, this

approach presents two important limitations. First, it misses the strong comovement between the

RER and NT. Figure 1 shows the path of the RER (blue) and NT (red) for the US. The trend of NT

after applying the HP filter (solid red) closely follows that of the RER (solid blue), with a lag of

around 6 quarters. That is, while the RER and NT exhibit a weak comovement at higher frequen-

cies, they are highly correlated at lower frequencies.
3
Second, it misses most of the variation in

the RER, which arises at frequencies lower than business cycles.
4
It is clear that the trend (solid

red) of the RER drives a large share of its fluctuations.
5
These two patterns are found not only in

1
The RER is defined as 𝑡 = 𝑡𝑃 ∗

𝑡 /𝑃𝑡 where 𝑡 the nominal exchange rate (the price of home currency per unit of

foreign currency), 𝑃 ∗
𝑡 is the foreign price level, and 𝑃𝑡 the home price level. An increase in𝑡 indicates a depreciation

of the home RER.

2
We use the export-import ratio as a measure of NT, as opposed to trade balance as a share of GDP, because

the former gives NT controlling for the scale of trade. The trade balance as a share of GDP can be written as

(𝑋−𝑀)
𝑌 = (𝑋−𝑀)

(𝑋+𝑀) ×
(𝑋+𝑀)
𝑌 , where

(𝑋−𝑀)
(𝑋+𝑀) is approximated by 0.5 log 𝑋/𝑀 using the first-order Taylor approximation. We

use log 𝑋/𝑀 to measure NT, addressing the concern that the changes in trade balance as a share of GDP are primarily

due to the changes in the scale of trade (Alessandria and Choi, 2021; Alessandria, Bai and Woo, 2022). This approach

aligns with our abstraction from average trade cost and emphasis on relative costs.

3
The delayed movement refers to the so called J-curve, which has been documented in the trade literature (Bald-

win and Krugman, 1989; Rose and Yellen, 1989; Backus, Kehoe and Kydland, 1994; Fitzgerald, Yedid-Levi and Haller,

2019).

4
Throughout the paper, whenever we refer to low or lower frequencies we specifically mean lower than business

cycles, i.e. cycles that last longer than 32 quarters.

5
This can be more precisely measured by the spectrum analysis. Our spectrum analysis shows that 61 percent of

RER variance arises from lower-frequency movements. This finding aligns with Rabanal and Rubio-Ramirez (2015),
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Figure 1: Real Exchange Rate and Net Trade Flows
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Notes: RER is the log of the quarterly real exchange rates of the United States. Normalized with 1980q1=0.

Effective exchange rate indices, Real, Narrow (BIS). NT is the log of Exports to Imports ratio for the

United States. Exports and Imports are from Quarterly National Accounts (OECD). Solid lines plot the

trend component of each variable from the Hodrick–Prescott filter with a smoothing parameter of 1600.

the US but also in many other countries.
6

In this paper, we provide a unified framework for studying the dynamics of the RER and NT

flows across all frequencies. We generalize the standard two-country international business cycle

model of Backus et al. (1994) by incorporating financial shocks following Itskhoki and Mukhin

(2021a), shocks to the cost of trading goods across countries, and dynamic trade.
7
Our model

captures the differential comovement between the RER and NT flows at different frequencies.

Furthermore, it closely matches the frequency decomposition of the RER variance observed in

the data. Notably, these additional aspects do not compromise the ability of the model to account

for the RER disconnect puzzles and standard international business cycle moments. The omission

of any key feature – financial shocks, trade shocks, or dynamic trade – results in the inability to

who find that 77 percent of the variance in the US RER is from the low-frequency. We discuss the spectrum analysis

in Section 5.3 and provide further details in Appendix B.

6
The delayed comovement of the RER and NT in other G7 countries has been documented by Hooper, Johnson

and Marquez (2000). Alessandria, Bai and Woo (2022) also show using a panel of 36 countries during the period

of 1970-2019 that the comovement is small in the short run but grows larger in the long run. Regarding the second

pattern, in Table F.1, we show that the low frequency accounts for most share of the RER variance in many other

major economies.

7
The framework in Backus et al. (1994) is similar to that in Stockman and Tesar (1995), and has been extended to

various asset market structures by Heathcote and Perri (2002, 2014).
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simultaneously account for these empirical patterns.

We model trade shocks as stochastic iceberg trade costs, providing a tractable representation

of changes in trade barriers. These barriers have been changing dramatically in the last decades,

leading to a global trade integration. However, these changes have occurred at different timings

and paces across countries. The time series of gross trade flows not only display an overall up-

ward trend, but also present considerable fluctuations and differences in the growth rates among

countries.
8
We focus on the differential component between outward and inward trade costs for

the US and the rest of the world (ROW) and abstract from the average cost, as the latter would

have no effect on relative measures such as the RER and NT.
9,10

Trade shocks capture many different sources of fluctuations in barriers to trading goods and

services across countries. For instance, numerous episodes of trade liberalization, including those

of China, have been accompanied by substantial reduction in both tariff and non-tariff barriers

like quotas and sanctions (Obstfeld and Rogoff, 2000; Delpeuch, Fize and Martin, 2021). There

have also been asymmetric trade reforms, like GATT rules, and temporary policies, such as

Reagan’s export restraints on Japanese automobiles. Expectations and uncertainty about future

policy can also act as a barrier to trade by affecting firms’ investment and exporting decisions

(Caldara, Iacoviello, Molligo, Prestipino and Raffo, 2020). Furthermore, technological advance-

ments in shipping and transportation have considerably reduced the cost of international trade

(Burstein, Neves and Rebelo, 2003; Corsetti and Dedola, 2005; Corsetti, 2016). More recently,

geopolitical conflicts have led to the blockage of trade routes and fluctuations in oil prices. In

a recent paper, Itskhoki and Mukhin (2022) find that changes in trade barriers are an important

driver of the ruble exchange rate following Russia’s invasion of Ukraine in 2022. The COVID-19

pandemic and environmental issues such as droughts affecting the Panama Canal have also con-

tributed to changes in trade costs. Given the abundance of these incidents, the relative size of

trade costs across countries fluctuates significantly at a high frequency, emerging as an essential

source of NT and RER variation.

8
See Figure F.1.

9
In our quantitative exercise, the ROW aggregate includes Canada, Finland, Germany, Ireland, Italy, Japan, Re-

public of Korea, Spain, Sweden and United Kingdom. This set of countries represents 60 percent of total US trade on

average. The estimated moments from the data are robust to having an unbalanced panel that includes China since

1990. For more details, see Appendix A.

10
We also show that our quantitative results are robust to incorporating the average trade costs in Section 7.
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Incorporating trade shocks along with financial shocks enables the model to accurately cap-

ture the high-frequency dynamics of the RER and NT. Absent trade shocks, where the RER and

NT are dominated by financial shocks, the model fails to generate the low correlation between

the two variables and result in excessively volatile NT flows.
11
When financial shocks generate a

higher return on bonds for the US relative to the ROW, savings in the US increase, and the excess

savings is exported to the ROW (US NT increases). At the same time, due to the fall in aggregate

demand in the US, the final good price falls (the US RER depreciates). Hence, financial shocks

induce a positive correlation between the RER and NT on impact. On the other hand, a trade

shock that raises the relative cost of exporting for the US leads to a decline in its NT. With less

intermediate goods exported and more imported, the supply of final goods in the US increases,

causing its price to fall (the US RER depreciates). Consequently, trade shocks induce a negative

correlation between the RER and NT on impact, offsetting the positive effect of financial shocks.

Furthermore, trade shocks generate a higher volatility of the RER relative to that of NT, while the

opposite happens under financial shocks. Hence, having both shocks allows the model to capture

the high frequency properties of the RER and NT flows.

We incorporate dynamic trade following Alessandria and Choi (2007, 2021) by assuming that

intermediate producers are heterogeneous in their idiosyncratic productivity and decide whether

to participate in the export market or not, subject to a fixed cost of exporting.
12
We assume that

the fixed cost is lower for incumbents than for new exporters, which makes the exporting deci-

sion forward-looking. Consequently, the distribution of exporters evolve slowly in response to

shocks and aggregate trade flows respond gradually over time. This allows the model to capture

the differential short- and long-run comovement between the RER and NT. It also contributes

to accounting for the frequency decomposition of the variance of the RER. In our benchmark

model, the share of the variance of the RER attributed to the low-frequency variation is 70 per-

cent, closely matching the 61 percent observed in the data. Without dynamic trade, this share

increases to 75 percent. This arises from dynamic trade making quantities in the short run more

11
Itskhoki and Mukhin (2021a) show that adding Dollar currency pricing and nominal rigidities has almost no

effect on the dynamics of NT and the RER induced by the financial shock.

12
Alessandria andChoi (2007, 2021) extends the sunk costmodel of exporting of Dixit (1989), Baldwin andKrugman

(1989) and Das, Roberts and Tybout (2007) to a general equilibrium framework. Other papers that extended the

framework in Backus et al. (1994) to have dynamic trade are Drozd and Nosal (2012), Erceg, Guerrieri and Gust

(2006) and Engel (2011).

4



inelastic than under static trade. As a consequence, prices in the short run, relative to the long

run, have a stronger response, redistributing the share of variation in the RER from lower to

higher frequencies.
13

In our quantitative exercise, we find that trade shocks play an important role in accounting

for the low frequency movements in the RER. To show this, we compute the contribution of

different shocks to the forecast error variance of the RER.We find that financial shocks explain 63

percent of the one-quarter ahead error forecast variance, with trade shocks explaining 35 percent.

However, when focusing at the eighty-quarters ahead, trade shocks explain 65 percent, while

financial shocks account for 26 percent. The more persistent equilibrium effect induced by trade

shocks over financial shocks arises from the propagation of the former through the resource

constraint, rather than differences in the persistence of the processes. Since most of the variation

in the RER arises at lower frequencies, we conclude that trade shocks are crucial for capturing

the overall dynamics of the RER.

The remainder of the paper is structured as follows. Section 2 reviews the literature. Section

3 presents our benchmark model, while Section 4 discusses the calibration and identification

strategy. Section 5 demonstrates the success of the benchmark model in capturing targeted and

untargeted moments related to the RER and NT dynamics at all frequencies. Section 6 studies the

role of different shocks in explaining the variation of the RER. Section 7 discusses the robustness

of our result to alternative specifications. Finally, Section 8 presents the concluding remarks.

2 Literature Review

Our paper bridges the gap between the studies in international finance and international trade,

by developing a theory that is consistent with both the RER and NT dynamics. On one hand,

there is a growing literature emphasizing the role of financial shocks for understanding the dy-

namics of exchange rates, with a focus on the macro and financial disconnect (Devereux and

Engel, 2002; Gabaix and Maggiori, 2015; Farhi and Gabaix, 2016; Itskhoki and Mukhin, 2021a).
14

On the other hand, a series of papers have explored the role of trade barriers in explaining the

13
This is consistent with the "Excess Persistence Puzzle" documented in Rabanal and Rubio-Ramirez (2015), which

refers to static trade models having an excess share of low frequency variation in the RER.

14
While this literature discusses the dynamics of both the real and nominal exchange rates, we limit our interest

to real variables.
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variation in trade and financial flows across countries (Obstfeld and Rogoff, 2000; Eaton, Kortum

and Neiman, 2016; Reyes-Heroles, 2016; Alessandria and Choi, 2021; Sposi, 2021; Alessandria, Bai

and Woo, 2022).
15
In our study, we generalize the framework in Backus et al. (1994) by integrat-

ing financial shocks, trade shocks, and dynamic trade.
16
This unified approach not only enhances

our understanding of the outcomes presented in both strands of the existing literature but also

deepens our comprehension of the economic dynamics at play. As emphasized in the financial

literature, we find that financial shocks are important for high-frequency fluctuations of the RER

and the financial disconnect. On the other hand, dynamic trade and trade shocks are crucial for

accounting for low-frequency movements of the RER and its comovement with NT.

A distinctive feature of our work is that we incorporate the low frequency variation in the

RER and NT. Only a limited number of papers studying the dynamics of the RER in general

equilibrium have focused on this frequency. Rabanal and Rubio-Ramirez (2015) show that a re-

duced form dynamic trade model with non-stationary cointegrated productivity shocks is able to

capture the spectrum of the RER.
17
Gornemann, Guerrón-Quintana and Saffie (2020) propose an

alternative mechanism relying on endogenous spillovers that amplify stationary fluctuations.
18

We share with these papers the focus on the low frequency variation of the RER and the impor-

tance of dynamic trade.
19

We differ from them in the way we model dynamic trade, which we

do with a microfoundation based on firms’ dynamic exporting decisions. Moreover, we propose

an alternative mechanism to account for the low-frequency variation observed in the RER. Our

explanation relies on shocks to the cost of trade that induce persistent changes in NT flows and

15
Ayres, Hevia and Nicolini (2020) explore the role of commodity prices in driving the variation of the RER and the

Backus-Smith-Kollmann correlation in developed economies. Our framework does not include a commodity sector,

but variation originated in this sector is most likely to be captured as changes in the trade costs in our model, as they

reflect changes in the cost of trading intermediate goods across countries.

16
Our work is also related to that in Heathcote and Perri (2014), which provides a comprehensive analysis of the

Backus et al. (1994) framework under different parametrizations and various asset structures, Heathcote and Perri

(2002), Stockman and Tesar (1995) and Baxter and Crucini (1995).

17
Drozd, Kolbin and Nosal (2021) show that dynamic trade is a key feature to improve the model’s ability to

account for the trade comovement puzzle, i.e. the significant relationship in the data between countries’ business

cycles synchronization and trade flows.

18
Corsetti, Dedola and Viani (2012) also study the RER dynamics at the frequency domain through spectral analy-

sis, but focus on the low frequency disconnect between the RER and relative consumption (Backus-Smith-Kollmann

Puzzle). Cao, Evans and Luo (2020) study the medium to long run dynamics of the US-UK RER and highlight the

role of persistent productivity shocks, incomplete financial markets and a high Armington elasticity in accounting

for its dynamics.

19
We also share with Gornemann et al. (2020) the importance of using trade data to discipline the model param-

eters.
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international relative prices, as opposed to productivity shocks.

Finally, our paper is related to the literature on the measurement of trade wedges. Levchenko,

Lewis and Tesar (2010), Fitzgerald (2012) and Alessandria, Kaboski and Midrigan (2013a) measure

trade wedges based on the Armington model to study the role of trade costs and asset market

frictions for international risk sharing. Head and Mayer (2014) explore different methods of es-

timating the gravity equation. We contribute to this literature by considering a specification

of trade costs that allows for a within-ROW component, and highlight its implications for the

comovement of the RER and macro aggregates.

3 Model

We build on the two-country international business cycle model of Backus et al. (1994) and It-

skhoki and Mukhin (2021a). The two countries are the ROW and the US, each producing a per-

fectly competitive non-traded final good. The non-traded final good is made of a mix of tradable

intermediates, using a CES technology with home bias.
20

The final good can be consumed or

invested by the household, and capital accumulation is subject to capital adjustment costs.

There is a unit mass of intermediate good producers in each country, producing differentiated

varieties. They are subject to aggregate productivity shocks and are heterogeneous in their id-

iosyncratic productivity. They make decisions on entering, staying or exiting the export market,

subject to the fixed costs that depends on the experience in the export market as in Dixit (1989),

Baldwin and Krugman (1989), Das et al. (2007), Alessandria and Choi (2007), and Alessandria

and Choi (2021). Intermediate firms set destination specific prices, and use labor and capital as

inputs of production. Optimal prices are set as a markup over the marginal cost. We introduce

time-varying markups, capturing pricing to market frictions in a reduced form, which leads to

persistent deviations from the law of one price. Intermediate firms also face stochastic iceberg

trade costs, depicted as only a fraction of goods shipped arriving at the destination.

On the asset side, there is an internationally traded bond, denominated in dollars. The ROW

household is subject to a bond adjustment cost, which induces stationarity of the model and

20
Itskhoki and Mukhin (2021a) emphasizes the importance of incomplete pass-through of the financial shock

mechanism, which they model using a Kimball aggregator. Even though we use a CES aggregator, we model incom-

plete pass-through by adding frictions in the pricing to market behavior of firms.
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captures portfolio re-balancing costs in a reduced form. The ROW household is also subject to a

financial shock, capturing the shock to uncovered interest parity of Itskhoki and Mukhin (2021a).

We describe below the model from the point of view of ROW agents.

Households

The representative household in the ROW maximizes the discounted expected utility

𝔼0
∞
∑
𝑡=0

𝛽 𝑡 [𝐶
𝜂
𝑡 (1 − 𝐿𝑡)1−𝜂]

1−𝜎

1 − 𝜎

where 𝐶𝑡 is consumption, 𝐿𝑡 is labor, 𝜂 is the weight on consumption, 𝛽 is the discount factor, and
1/𝜎 is the intertemporal elasticity of substitution. The flow budget constraint is given by

𝑃𝑡 (𝐶𝑡 + 𝐼𝑡) + 𝐵𝑡+1 +
𝑡𝐵∗

𝑡+1
𝑒𝜓𝑡 + 𝑡

𝜒
2 (𝐵∗

𝑡+1 − 𝐵̄)
2 ≤ 𝑊𝑡𝐿𝑡 + 𝑅𝑘𝑡 𝐾𝑡 + 𝐵𝑡(1 + 𝑖𝑡−1) + 𝑡𝐵∗

𝑡 (1 + 𝑖∗𝑡−1) + Π𝑡

where 𝑃𝑡 is the price index, 𝐼𝑡 is investment, 𝐵𝑡+1 is the quantity of ROW bonds (zero net sup-

ply), 𝐾𝑡 is capital, 𝑖𝑡−1 is the nominal interest rate on ROW bonds purchased at 𝑡 − 1, and Π𝑡 is

aggregate profits of intermediate firms. On the international asset side, 𝐵∗
𝑡+1 is the quantity of the

internationally traded bonds held by the ROW household, 𝑖∗𝑡−1 is the nominal interest rate on in-

ternational bonds purchased at 𝑡 −1, and 𝑡 is the nominal exchange rate, measured as the price of

the ROW currency per unit of US currency. The term 𝜓𝑡 is the financial shock, 𝜒 is the adjustment

cost of internationally traded bonds, and 𝐵̄ is the steady state level of net foreign assets.
21

The stock of capital in each country follows the law of motion,

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + [𝐼𝑡 −
𝜅
2
(Δ𝐾𝑡+1)2
𝐾𝑡 ] ,

where the parameter 𝜅 governs the adjustment cost of capital.

The solution of the ROW household can be characterized by the labor supply condition and

the Euler equations for ROW and international bonds and capital. The stochastic discount factor

21
The financial shock 𝜓𝑡 only affects the ROWhousehold, hence generating a differential return on internationally

traded bonds for ROW and US households. Our result is invariant to whether the shock 𝜓𝑡 affects the adjustment

cost of debt or not. Our results are also invariant to whether the the nominal exchange rate is part of the adjustment

cost term or not.
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of the ROW household between 𝑡 and 𝑡 + 1 is given by

Ω𝑡,𝑡+1 ≡ 𝛽𝔼𝑡 [(
𝐶𝜂
𝑡+1(1 − 𝐿𝑡+1)1−𝜂
𝐶𝜂
𝑡 (1 − 𝐿𝑡)1−𝜂 )

1−𝜎 𝐶𝑡
𝐶𝑡+1 ]

.

From the log-linearized Euler equations of the ROW household for ROW and international

bonds, we can derive an equation for the deviations from the uncovered interest parity (UIP)

condition,

𝑖𝑡 − 𝑖∗𝑡 − 𝔼𝑡 [Δ𝑒𝑡+1] = 𝜓𝑡 − 𝜒 ⋅ (𝐵∗
𝑡+1 − 𝐵̄) (1)

where 𝔼𝑡 [Δ𝑒𝑡+1] ≡ 𝔼𝑡 [ln 𝑡+1 − ln 𝑡] is the expected change of the nominal exchange rate. The

financial shock 𝜓𝑡 propagates to the economy by inducing deviations to the UIP condition. While

we model the financial shock as an exogenous shock, the derived UIP condition is equivalent to

those in models with segmented financial markets, noisy traders or limits to arbitrage (Itskhoki

and Mukhin, 2021a; De Long, Shleifer, Summers and Waldmann, 1990; Jeanne and Rose, 2002;

Gabaix and Maggiori, 2015).
22
Finally, the second term on the right hand side captures the devia-

tions from UIP that arise endogenously through the effects on the net foreign assets.
23

Aggregation Technology

A competitive retail sector combines intermediate goods from the ROW and the US with a

constant elasticity of substitution (CES) to produce the final good, 𝐷𝑡 , which can be consumed or

invested. The CES aggregator is given by

𝐷𝑡 = [𝑌
𝜌−1
𝜌

𝑅𝑡 + 𝛾 1
𝜌𝑌

𝜌−1
𝜌

𝑈 𝑡 ]

𝜌
𝜌−1

where 𝑌𝑅𝑡 is the quantity of domestic goods consumed in the ROW, 𝑌𝑈 𝑡 is the quantity of imported

goods from the US consumed in the ROW, 𝛾 captures the home bias, and 𝜌 is the Armington

elasticity between domestic and imported composite goods.

22
Financial shocks can also be microfounded by risk-premia (Verdelhan, 2010; Colacito and Croce, 2013; Farhi and

Gabaix, 2016) or heterogeneous beliefs and expectational errors (Evans and Lyons, 2002; Gourinchas and Tornell,

2004; Bacchetta and Van Wincoop, 2006).

23
While we discipline with data the size of the adjustment cost 𝜒 in Section 4, we do not find that the endogenous

component of the deviations from UIP is quantitatively important.
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The total expenditure in the retail sector is given by

𝑃𝑡𝐷𝑡 = 𝑃𝑅𝑡𝑌𝑅𝑡 + 𝑃𝑈 𝑡𝑌𝑈 𝑡

where 𝑃𝑅𝑡 is the price of domestic goods in the ROW, and 𝑃𝑈 𝑡 is the price of imported goods in

the ROW.

The problem of the retail sector is to minimize expenditure on intermediate goods subject to

the CES aggregator, by choosing quantities {𝑌𝑅𝑡 , 𝑌𝑈 𝑡}. The final good is used by households for

either consumption or investment so that 𝐷𝑡 = 𝐶𝑡 + 𝐼𝑡 . Solving this maximization problem yields

the demand functions for ROW and US composite goods, given by

𝑌𝑈 𝑡 = 𝛾 (
𝑃𝑈 𝑡
𝑃𝑡 )

−𝜌
(𝐶𝑡 + 𝐼𝑡) and 𝑌𝑅𝑡 = (

𝑃𝑅𝑡
𝑃𝑡 )

−𝜌
(𝐶𝑡 + 𝐼𝑡)

where 𝑃𝑡 is given as

𝑃𝑡 = [𝑃 1−𝜌
𝑅𝑡 + 𝛾𝑃 1−𝜌

𝑈 𝑡 ]
1/(1−𝜌) .

The domestic and imported goods, 𝑌𝑅𝑡 and 𝑌𝑈 𝑡 , are the composite of varieties produced by

heterogeneous producers. The aggregators are

𝑌𝑅𝑡 = (∫
1

0
𝑦

𝜃−1
𝜃

𝑗,𝑅𝑡𝑑𝑗)

𝜃
𝜃−1

𝑌𝑈 𝑡 = (∫
𝑗∈∗

𝑡

𝑦
𝜃𝑡 −1
𝜃𝑡

𝑗,𝑈 𝑡 𝑑𝑗)

𝜃𝑡
𝜃𝑡 −1

(2)

where 𝜃 and 𝜃𝑡 are the elasticity of substitution across varieties, and ∗
𝑡 is the set of exporting

firms in the US. Thus the demand function for each variety is given by

𝑦𝑗,𝑅𝑡 = (
𝑝𝑗,𝑅𝑡
𝑃𝑅𝑡 )

−𝜃
𝑌𝑅𝑡 𝑦𝑗,𝑈 𝑡 = (

𝑝𝑗,𝑈 𝑡
𝑃𝑈 𝑡 )

−𝜃𝑡
𝑌𝑈 𝑡 . (3)

The price indexes for the composite goods are given by

𝑃𝑅𝑡 = (∫
1

𝑗=0
𝑝𝑗,𝑅𝑡 1−𝜃)

1
1−𝜃

𝑃𝑈 𝑡 = (∫𝑗∈∗
𝑡

𝑝𝑗,𝑈 𝑡 1−𝜃𝑡)

1
1−𝜃𝑡 .

Note that firms set destination specific prices, subject to the demands that differ across des-

10



tinations due to the time-varying elasticity for the imported varieties. We let the elasticity of

substitution across imported varieties to be a function of the RER with 𝜃𝑡 = 𝜃𝜁
𝑡 (and 𝜃 ∗𝑡 = 𝜃−𝜁

𝑡

for exported varieties). This captures pricing-to-market frictions in a reduced form, leading to

persistent deviations from the law of one price.
24
When there is a depreciation of the RER for the

ROW, markups charged by US firms to ROW importers fall. This is consistent with the findings

in Alessandria and Kaboski (2011), which show that firms price to income, that is, firms charge

higher prices to higher income destinations. This allows the model to capture the incomplete

pass-through of exchange rates to prices. Furthermore, absent this friction the terms of trade are

more volatile than the RER, contrary to the data.
25

The problem of the US retailers is given in a symmetric form

max
{𝑌 ∗

𝑈 𝑡 ,𝑌 ∗
𝑅𝑡}
𝑃 ∗
𝑡 (𝐶 ∗

𝑡 + 𝐼 ∗𝑡 ) − [𝑃 ∗
𝑈 𝑡𝑌 ∗

𝑈 𝑡 + 𝑃 ∗
𝑅𝑡𝑌 ∗

𝑅𝑡]

subject to the CES aggregator, resulting in the demand functions of

𝑌 ∗
𝑅𝑡 = 𝛾 (

𝑃 ∗
𝑅𝑡
𝑃 ∗
𝑡 )

−𝜌
(𝐶 ∗

𝑡 + 𝐼 ∗𝑡 ) and 𝑌 ∗
𝑈 𝑡 = (

𝑃 ∗
𝑈 𝑡
𝑃 ∗
𝑡 )

−𝜌
(𝐶 ∗

𝑡 + 𝐼 ∗𝑡 ) .

Intermediate Firms

There is a continuum of heterogeneous firms indexed by 𝑗 ∈ [0, 1] in each country, specializing
in the production of a differentiated intermediate good. There is monopolistic competition among

these firms. The firms are subject to aggregate and firm-specific shocks. The firm 𝑗’s production
function is given by

𝑦𝑗𝑡 = 𝑒𝑎𝑡+𝜇𝑗𝑡 𝑙𝛼𝑗𝑡𝑘1−𝛼𝑗𝑡 ,

where 𝛼 is the capital share of income, 𝑎𝑡 is the productivity shock, and 𝜇𝑗𝑡 is a idiosyncratic

firm-specific shock, 𝜇 𝑖𝑖𝑑∼ 𝑁 (0, 𝜎 2
𝜇 ). All firms sell their products in their own country, while some

24
The pricing to market friction generates time-varying markups in a similar way as with a Kimball aggregator,

as in Itskhoki and Mukhin (2021a), and can be microfounded with search frictions. See Edmond, Midrigan and Xu

(2018) for a study of heterogeneous firm with the Kimball aggregator. On the other hand, Drozd and Nosal (2012)

provide an alternative model of pricing to market where firms invest in marketing activities in order to accumulate

customers.

25
See Raffo (2008) for an analysis on the counterfactual dynamics of the terms of trade in the standard two-country

international business cycle model.
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of them choose to export. The resource constraint of a firm is given by

𝑦𝑗𝑡 = 𝑒𝜉𝑅𝑡𝑦𝑗,𝑅𝑡 + 𝑚𝑗𝑡𝑒𝜉
∗
𝑅𝑡𝑦∗

𝑗,𝑅𝑡

where 𝑦𝑗,𝑅𝑡 is ROW variety used domestically, 𝑦∗
𝑗,𝑅𝑡 is ROW variety exported to the US, 𝜉𝑅𝑡 is the

stochastic iceberg cost for domestic trade within the ROW countries, 𝜉 ∗𝑅𝑡 is the stochastic iceberg
cost for ROW exports to the US, and𝑚𝑗𝑡 ∈ {0, 1} is the current export status of firm 𝑗, with𝑚𝑗𝑡 = 1
being export and 𝑚𝑗𝑡 = 0 not export. Note that we are considering a case of iceberg costs that

allows for the iceberg trade cost within the ROW, 𝜉𝑅𝑡 , to be nonzero. This takes into account that
the ROW is an aggregate of multiple countries that trade with each other. In order to capture the

average trade cost within the ROW countries, we relax the constraint of a standard specification

with zero domestic iceberg costs.
26,27

In order to export, firms must pay a fixed cost, denominated in units of labor. The fixed cost

for starting to export differs from the fixed cost to stay in the export market. To start exporting,

a firm pays a cost of𝑊𝑡𝑓 0, while an incumbent exporter pays the continuation cost of𝑊𝑡𝑓 1, with
𝑓 1 < 𝑓 0. That is, there is a sunk cost associated with export participation, capturing exporter

hysteresis and the slow response of aggregate exports to shocks.

An intermediate good producer in the ROW is described by its idiosyncratic productivity

and past export status, (𝜇𝑗𝑡 , 𝑚𝑗𝑡−1). The aggregate state which includes the aggregate produc-

tivity, trade and financial shock, and the endogenous assets and distribution of exporters and

non-exporters is subsumed in the time subscript of the value function. The dynamic problem of

a firm is,
28

𝑉𝑡(𝜇𝑗𝑡 , 𝑚𝑗𝑡−1) = max
{𝑚𝑗𝑡 ,𝑝𝑗,𝑅𝑡 ,𝑝∗𝑗,𝑅𝑡 ,𝑙𝑗𝑡 ,𝑘𝑗𝑡}

𝑝𝑗,𝑅𝑡𝑦𝑗,𝑅𝑡 + 𝑚𝑗𝑡𝑡𝑝∗𝑗,𝑅𝑡𝑦∗
𝑗,𝑅𝑡 − 𝑊𝑡 𝑙𝑗𝑡 − 𝑅𝑘𝑡 𝑘𝑗𝑡 − 𝑚𝑗𝑡𝑊𝑡𝑓 𝑚𝑗𝑡−1 + 𝔼𝑡Ω𝑡,𝑡+1𝑉𝑡+1(𝜇𝑗𝑡+1, 𝑚𝑗𝑡)

subject to the ROW retailer’s demand for ROW intermediates, 𝑦𝑗,𝑅𝑡 , the US retailer’s demand for

ROW intermediates, 𝑦∗
𝑗,𝑅𝑡 , and the resource constraint. The static optimality conditions of the

26
We explain in more detail the role of the within country trade cost when we present the shock processes.

27
In Appendix E.6, using a three country model we show that this shock operates qualitatively in the same way

as a trade shock between two ROW countries.

28
Intermediate firms discount the future using the household stochastic discount factor.
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firm are given by the optimal demand for inputs and optimal pricing,

𝑊𝑡 = (1 − 𝛼)𝑦𝑗𝑡𝑙𝑗𝑡
and 𝑅𝑘𝑡 = 𝛼

𝑦𝑗𝑡
𝑘𝑗𝑡

𝑝𝑗,𝑅𝑡 = 𝑒𝜉𝑅𝑡
𝜃

𝜃 − 1𝑀𝐶𝑗𝑡 and 𝑡𝑝∗𝑗,𝑅𝑡 = 𝑒𝜉
∗
𝑅𝑡

𝜃−𝜁
𝑡

𝜃−𝜁
𝑡 − 1

𝑀𝐶𝑗𝑡 (4)

where the 𝑀𝐶𝑗𝑡 = 1
𝑒𝑎𝑡 +𝜇𝑗𝑡

(𝑅𝑘𝑡 )𝛼 (𝑊𝑡 )1−𝛼
𝛼𝛼 (1−𝛼)1−𝛼 is the marginal cost. Note that firms set different prices across

destinations, since they face different demands at home and foreign. Moreover, note that the

pricing to market friction, 𝜁 , generates deviations from the law of one price that are proportional

to the RER.
29

Furthermore, the fixed cost 𝑓 𝑚𝑗𝑡−1
that a firm pays depends on its exporting status in the pre-

vious period 𝑚𝑗𝑡−1. Thus, we can solve for the threshold productivity to participate in the export

market depending on its previous status: 𝜇1𝑡 and 𝜇0𝑡 for those who were exporting and were not

in the previous period, respectively. At the threshold, a firm is indifferent between exporting and

not exporting. Hence, a firmwill decide to participate in the export market only if its productivity

is above the threshold. The thresholds satisfy

𝑊𝑡𝑓 𝑚 − 𝜋 ∗ (𝜇𝑚𝑡 ) = 𝔼𝑡 [Ω𝑡,𝑡+1 (𝑉𝑡+1(𝜇𝑡+1, 1) − 𝑉𝑡+1(𝜇𝑡+1, 0))] , 𝑚 ∈ {0, 1}

where 𝜋 ∗ (𝜇𝑚𝑡 ) is the static profit from exporting for a firmwith idiosyncratic productivity 𝜇𝑗𝑡 = 𝜇𝑚𝑡 ,
given as

𝜋 ∗(𝜇𝑗𝑡) = 𝑡 𝑝∗𝑗,𝑅𝑡(𝜇𝑗𝑡) 𝑦∗
𝑗,𝑅𝑡(𝑝∗𝑗,𝑅𝑡(𝜇𝑗𝑡))

with 𝑝𝑗,𝑅𝑡 and 𝑦𝑗,𝑅𝑡 from Equations 3 and 4 as functions of the idiosyncratic productivity 𝜇𝑗𝑡 . Since
the fixed cost is higher for a new exporter than for an incumbent exporter, 𝑓 0 > 𝑓 1, the produc-
tivity threshold is higher for the former than the latter, 𝜇0𝑡 > 𝜇1𝑡 .

The presence of sunk costs of exporting generates a slow moving distribution of aggregate

29
In particular, the deviations from the law of one price are given by

ln(𝑡𝑝∗𝑗,𝑅𝑡 /𝑝𝑗,𝑅𝑡)
ln𝑡

∝ 𝜁
𝜃−1 . This implies an exchange

rate pass-through of [
(𝜃−1)−𝜁
(𝜃−1) × 100] percent at the steady state.
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exporters, 𝑁𝑡 . The law of motion of aggregate exporters is given by,

𝑁𝑡 = 𝑁𝑡−1 ⋅ 𝑃 [𝜇𝑗𝑡 > 𝜇1𝑡 ] + (1 − 𝑁𝑡−1) ⋅ 𝑃 [𝜇𝑗𝑡 > 𝜇0𝑡 ] .

The aggregate labor and capital demands from intermediate firms are given by

𝐿𝑡 = ∫
1

𝑗=0
𝑙𝑗𝑡 + 𝑓 0 ⋅ (1 − 𝑁𝑡−1) ⋅ 𝑃 [𝜇𝑗𝑡 > 𝜇0𝑡 ] + 𝑓 1 ⋅ 𝑁𝑡−1 ⋅ 𝑃 [𝜇𝑗𝑡 > 𝜇1𝑡 ]

𝐾𝑡 = ∫
1

𝑗=0
𝑘𝑗𝑡 .

Note that the aggregate labor demand includes the fixed cost of exporting of all firms because the

costs are in terms of labor.

Shock Processes

Productivity shocks feature a common and differential component,
30

⎡
⎢
⎢
⎣

𝑎𝑡
𝑎∗𝑡

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑎𝑐𝑡 + 𝑎𝑑𝑡/2
𝑎𝑐𝑡 − 𝑎𝑑𝑡/2

⎤
⎥
⎥
⎦

where the common component, 𝑎𝑐𝑡 , and the differential component, 𝑎𝑑𝑡 , each follow an AR(1)

process,

𝑎𝑐𝑡 = 𝜌𝑐𝑎𝑎𝑐𝑡−1 + 𝜀𝑐𝑎𝑡 𝜀𝑐𝑎𝑡 ∼ 𝑁 (0, 𝜎 𝑐𝑎 )

𝑎𝑑𝑡 = 𝜌𝑑𝑎𝑎𝑑𝑡−1 + 𝜀𝑑𝑎𝑡 𝜀𝑑𝑎𝑡 ∼ 𝑁 (0, 𝜎 𝑑𝑎 ).

We assume that the relative trade cost between ROW and US, 𝜉𝑡 , follows an AR(1) process.

This arises from decomposing country-specific trade shocks into common and differential com-

ponents, as in Waugh (2011) and Alessandria and Choi (2021), and then abstracting from the

common component. In our benchmark specification, we do not consider a common trade cost

because it primarily affect the level of gross trade, without first order effects on relative variables

30
Alternatively country-specific shocks can be written as a combination of these orthogonal shocks.
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such as the RER and NT.
31,32

Specifically, the trade cost shocks are given by

𝜉 ∗𝑅𝑡 =
𝜉𝑡
2 𝜉𝑈 𝑡 = −𝜉𝑡2

𝜉𝑅𝑡 = 𝜏
𝜉𝑡
2 𝜉 ∗𝑈 𝑡 = 0 (5)

where 𝜏 ∈ ℝ and

𝜉𝑡 = 𝜌𝜉 𝜉𝑡−1 + 𝜀𝜉 𝑡 , 𝜀𝜉 𝑡 ∼ 𝑁 (0, 𝜎𝜉 ).

Note that we are allowing for cost of trading ROW goods within the ROW to potentially be

non-zero and impose the general assumption 𝜏 ∈ ℝ.33 This model nests the case of only differ-

ential trade costs between countries under zero within-ROW cost, i.e. 𝜏 = 0.34 The parameter 𝜏
captures the elasticity of shipping costs within the ROW to export cost to the US. When mapping

the model to the data, 𝜏 captures the average trade costs across ROW countries.

This specification allows the within-ROW trade cost to vary over time and capture the evolu-

tion of trade integration among the countries that compose the ROW aggregate. In fact, during

the time period we consider, many countries implemented trade reforms that jointly lowered the

exporting cost to the US and non-US ROW countries, lowering both 𝜉 ∗𝑅𝑡 and 𝜉𝑅𝑡 . For example, the

Asia-Pacific Economic Cooperation in the 1990s and the creation of the European Union gener-

ated significant changes in trade barriers among the countries in the ROW. Also, countries like

China, Korea, and India focused on improving their export efficiency and entering the interna-

tional market. These events resulted in lower costs of exporting to the US, as well as to other

31
The importance of asymmetries in trade costs has also been highlighted by Dix-Carneiro, Pessoa, Reyes-Heroles

and Traiberman (2023). They show that this source of variation is an important driver of manufacturing production

and trade imbalances in the US due to the emergence of China in international goods markets.

32
Although average trade costs likely exhibit a trend and change rarely, it is reasonable to assume that relative

trade costs fluctuate more frequently and are mean-reverting with modest persistence. This is because numerous

incidents, including trade policy shifts, advancements in transportation technology, and geopolitical issues, affect

trade costs of different countries at different times. In Appendix E.4 we include a common trade cost component and

show that our main results are robust to this specification.

33
We assume that the within-country component is only present in the ROW. This is to account for the fact the

other countries in the ROWwent through significantly larger changes in trade barriers compare to the regions within

the US. However, imposing time varying cost for the within-US trade in a symmetric way delivers the same results.

34
While we also allow for domestic iceberg trade cost, for values of 𝜏 close enough to the home bias parameter 𝛾 ,

it generates a qualitatively similar mechanism as the relative demand shocks, or home bias shocks, in Pavlova and

Rigobon (2007). They use a CES function of the form 𝐶𝑡 +𝐼𝑡 = [(1 − 𝛾)
1
𝜌 (𝑒−𝛾𝜉𝑡)

1
𝜌 𝑌

𝜌−1
𝜌

𝑅𝑡 + 𝛾 1
𝜌 (𝑒(1−𝛾)𝜉𝑡)

1
𝜌 𝑌

𝜌−1
𝜌

𝑈 𝑡 ]

𝜌
𝜌−1

. Hence,

this type of relative demand shocks can be capturing changes in trade integration within the ROW aggregate, which

we also illustrate using a three country model in Appendix E.6.
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countries in the ROW aggregate.

Larger positive values of 𝜏 lead to higher within country trade costs for the ROW, conditional

on a positive iceberg cost shock. Since this leaves fewer ROW intermediates to be aggregated

to produce the final good, the trade shock induce a negative effect on output in the ROW. The

strength of the negative effect on output is increasing in 𝜏 , and so is the effect on domestic ab-

sorption. Therefore, the cross country correlation of domestic absorption will vary with 𝜏 . In
Section 7 we present a detailed analysis on the role of 𝜏 in the response of aggregate variables to

trade shocks and show that the cross country correlation of domestic absorption identifies 𝜏 .35

Finally, we assume that the financial shock follows an AR(1) process,

𝜓𝑡 = 𝜌𝜓𝜓𝑡−1 + 𝜖𝜓𝑡

where 𝜌𝜓 is the persistence and 𝜖𝜓𝑡 ∼ 𝑁 (0, 𝜎𝜓 ).

Market Clearing and Country Budget Constraint

Goods market clearing for each firm 𝑗 requires that its production is split between supply to

the ROW and the US and satisfies the local demand in each market:

𝑦𝑗𝑡 = 𝑒𝜉𝑅𝑡𝑦𝑗,𝑅𝑡 + 𝑒𝜉
∗
𝑅𝑡𝑦∗

𝑗,𝑅𝑡 .

With the aggregation presented in Equation 2, this leads to the aggregate market clearing condi-

tion where the total production of the ROW is split between demand for composite goods in the

ROW and the US:

𝑌𝑡 = 𝑒𝜉𝑅𝑡𝑌𝑅𝑡 + 𝑒𝜉
∗
𝑅𝑡𝑌 ∗

𝑅𝑡 .

Lastly, combining the household budget constraint with aggregate intermediate profits as well

as the market clearing conditions above, we obtain the ROW country budget constraint:

𝑡𝐵∗
𝑡+1

𝑒𝜓𝑡 − 𝑡𝐵∗
𝑡 (1 + 𝑖∗𝑡−1) = 𝑇𝐵𝑡 − 𝑡

𝜒
2 (𝐵∗

𝑡+1 − 𝐵̄)
2

with 𝑇𝐵𝑡 = 𝑡𝑃 ∗
𝑅𝑡𝑌 ∗

𝑅𝑡 − 𝑃𝑈 𝑡𝑌𝑈 𝑡
35
We also show in Section 7 that the main results about NT and RER at high and lower frequencies are robust to

the case of 𝜏 = 0.
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where 𝑇𝐵𝑡 is the nominal trade balance. NT is the log of the real export-import ratio, given by

𝑛𝑡𝑡 = 𝜌 (𝑡𝑜𝑡𝑡 + 𝑞𝑡) + (𝑑 ∗
𝑡 − 𝑑𝑡) + ((1 − 𝜃 ∗)𝜉 ∗𝑅𝑡 − (1 − 𝜃)𝜉𝑈 𝑡) + (1 − 𝜌) (

1
1 − 𝜃 𝑛

∗
𝑡 −

1
1 − 𝜃 ∗𝑛𝑡) (6)

where 𝑡𝑜𝑡𝑡 ≡ 𝑝𝑚𝑡 − 𝑝𝑥𝑡 is the terms of trade, and 𝑛𝑡 and 𝑛∗𝑡 the log of the mass of exporters in the

ROW and the US, respectively. For a detailed derivation of 𝑛𝑡𝑡 see Appendix F. Finally, the budget
constraint of the US is satisfied by Walras Law.

Final Goods Price Normalization

Wefix the final good prices in both countries, 𝑃𝑡 and 𝑃 ∗
𝑡 , to one. Implicitly we are assuming that

the monetary authority in each country perfectly stabilizes inflation as in Itskhoki and Mukhin

(2021a). Note that the RER, 𝑡 , is defined as the relative price of a basket of ROW to US goods,

𝑡 =
𝑡𝑃 ∗

𝑡
𝑃𝑡

where 𝑡 is the nominal exchange rate. Thus the RER, 𝑡 , is same as the nominal exchange rate,

𝑡 , which is the price of ROW currency per unit of US currency.

Definition of Recursive Competitive Equilibrium

A recursive competitive equilibrium is defined by a sequence for 𝑡 = 0, 1, … ,∞ of aggregate

prices {𝑊𝑡 ,𝑊 ∗
𝑡 , 𝑅𝑘𝑡 , 𝑅𝑘∗𝑡 , 𝑡 , 𝑃𝑅𝑡 , 𝑃 ∗

𝑅𝑡 , 𝑃𝑈 𝑡 , 𝑃 ∗
𝑈 𝑡 , 𝑖𝑡 , 𝑖∗𝑡}, firm-level prices {𝑝𝑗,𝑅𝑡 , 𝑝∗𝑗,𝑅𝑡 , 𝑝𝑗,𝑈 𝑡 , 𝑝∗𝑗,𝑈 𝑡}, aggre-

gate allocations {𝐶𝑡 , 𝐶 ∗
𝑡 , 𝐿𝑡 , 𝐿∗𝑡 , 𝐼𝑡 , 𝐼 ∗𝑡 , 𝐵∗

𝑡+1, 𝐵𝑡+1, 𝑌𝑅𝑡 , 𝑌 ∗
𝑅𝑡 , 𝑌𝑈 𝑡 , 𝑌 ∗

𝑈 𝑡 , }, firm-level allocations {𝑦𝑗,𝑅𝑡 , 𝑦∗
𝑗,𝑅𝑡 , 𝑦𝑗,𝑈 𝑡 , 𝑦∗

𝑗,𝑈 𝑡},
firm-level input choices and export decisions, and the mass of exporters {𝑁𝑡 , 𝑁 ∗

𝑡 }, such that

1. Given prices {𝑊𝑡 ,𝑊 ∗
𝑡 , 𝑅𝑘𝑡 , 𝑅𝑘∗𝑡 , 𝑡 , 𝑖𝑡 , 𝑖∗𝑡}, {𝐶𝑡 , 𝐿𝑡 , 𝐼𝑡 , 𝐵𝑡+1, 𝐵∗

𝑡+1} solves the problem of the ROW

households, and {𝐶 ∗
𝑡 , 𝐿∗𝑡 , 𝐼 ∗𝑡 , 𝐵∗

𝑡+1} correspondingly for the US households.

2. Given prices {𝑝𝑗,𝑅𝑡 , 𝑝∗𝑗,𝑅𝑡 , 𝑝𝑗,𝑈 𝑡 , 𝑝∗𝑗,𝑈 𝑡}, {𝑦𝑗,𝑅𝑡 , 𝑦∗
𝑗,𝑅𝑡 , 𝑦𝑗,𝑈 𝑡 , 𝑦∗

𝑗,𝑈 𝑡} solves the problem in the final re-

tail sectors in the ROW and the US.

3. Firm-level input choices, prices, and export decisions solve the firm’s dynamic program-

ming problems.

4. The market clearing conditions for goods, labor and bonds are satisfied.
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5. Rationality holds, so that the laws of motions are consistent with agents’ decision rules.

4 Calibration

We use data for the period 1980Q1-2019Q4 for the US and ROW to discipline our model. The

details about the data are in Appendix A.

4.1 Benchmark Model

We have three sets of calibrated parameters. First, we exogenously calibrate parameters that

are standard in the literature. Second, we calibrate the parameters that are related to the export

behavior of firms using firm level data. Third, we jointly calibrate the parameters related to the

shocks processes, the pricing to market friction and adjustment costs to match a set of equal

number of moments.

Standard Parameters

The standard parameters that are exogeneously calibrated are displayed in panel A of Table

1. The time unit in the model is a quarter, and we choose a discount factor of 𝛽 = 0.99, which
implies an annual interest rate of 4 percent. The depreciation rate is set to 𝛿 = 0.02. The risk

aversion is 𝜎 = 2, a value frequently used in related business cycle studies. The capital share of

𝛼 = 0.36 is consistent with the labor share in the US. The preference weight on consumption is

𝜂 = 0.36, set to match the steady state labor of 1/4. The elasticity of substitution between ROW

and US goods, 𝜌, is set to be 1.5, following the estimates in Feenstra, Luck, Obstfeld and Russ

(2018). The elasticity of substitution across varieties 𝜃 is set to 4 to match a producer markup of

33 percent. The home bias, governed by 𝛾 , is set to match the average trade share of 14 percent in

the US during our sample period. We assign these values symmetrically to the US and the ROW.

Finally, we set the persistence of the common and differential productivity shocks, 𝜌𝑎𝑑 and 𝜌𝑎𝑐 , to
be equal to 0.97, following Itskhoki and Mukhin (2021a).

Producer Trade Parameters

One of the benefits of modeling the dynamic trade with the microfoundations of the sunk

exporting cost is that we can directly use exporter data to pin down the producer parameters.
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Table 1: Calibrated Parameters

Parameter Value Target Moment

A. Standard Parameters

Discount factor 𝛽 0.99 Annual interest rate of 4%

Risk aversion 𝜎 2 Intertemporal elasticity of substitution of .5

Weight on consumption 𝜂 0.36 Hours worked (Frisch elasticity)

Capital share 𝛼 0.36 Capital share of income

Elasticity of substitution across varieties 𝜃 4 Producer markup of 33%

Elasticity of substitution between H and F 𝜌 1.5 Long-run price elasticity

Depreciation rate 𝛿 0.02

Home bias 𝛾 0.097 Trade-to-GDP ratio of 14%

Common productivity, persistence 𝜌𝑎𝑐 0.97 GDP persistence

Differential productivity, persistence 𝜌𝑎𝑑 0.97 GDP persistence

B. Producer Trade Parameters

Fixed cost of new exporters 𝑓 0 0.14 Export participation of 20%

Fixed cost of incumbent exporters 𝑓 1 0.04 Exit rate of 2.5%

Volatility of idiosyncratic productivity 𝜎𝜇 0.15 Exporter premium of 50%

C. Shocks, Adjustment Costs and Pricing to Market

Common productivity, volatility 𝜎𝑎𝑐 0.004 𝜎(Δ𝑦)
Differential productivity, volatility 𝜎𝑎𝑑 0.005 𝜌(Δ𝑦, Δ𝑦∗)
Financial shock, volatility 𝜎𝜓 0.002 𝜌 (Δ𝑐 − Δ𝑐∗, Δ𝑞)
Financial shock, persistence 𝜌𝜓 0.957 𝜌 (𝑖 − 𝑖∗)
Trade shock, volatility 𝜎𝜉 0.052 𝜎(𝑛𝑡)/𝜎(𝑞)
Trade shock, persistence 𝜌𝜉 0.971 𝜌 (Δ𝑛𝑡, Δ𝑞)
Trade shock, within-country share 𝜏 0.171 𝜌(Δ𝑑, Δ𝑑 ∗)
Adjustment cost of portfolios 𝜒 0.0137 𝜌(𝑛𝑡)
Adjustment cost of capital 𝜅 2.425 𝜎(Δ𝑖𝑛𝑣)/𝜎(Δ𝑦)
Pricing to market parameter 𝜁 0.966 𝜌(Δ𝑡𝑜𝑡, Δ𝑞)

Notes: The table presents the values of calibrated parameters of the benchmark model. When we consider alternative

models, some of the parameters are set to a different value while the other parameters are all recalibrated. In a model

without trade shocks, 𝜎𝜉 = 𝜌𝜉 = 0. In a model without trade dynamics, 𝑓 0 = 𝑓 1 = 𝜎𝜇 = 0. In Panel C, the lower cases

indicate that variables are in logs, for example, 𝑞 ≡ ln() is log of the RER.
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We calibrate three parameters related to the export block: fixed costs of exporting for new and

incumbent exporters, 𝑓 0 and 𝑓 1, and the volatility of idiosyncratic productivity shocks, 𝜎𝜂. These
parameters are displayed in panel B of Table 1. The fixed costs and the volatility are set to jointly

match firm level moments on exporter dynamics. In particular, we target an export participation

of 20 percent, a quarterly exporter exit rate of 2.5 percent, and a size of exporters 50 percent

larger than non-exporters. These are consistent with the US trade and exporter characteristics in

the early 1990s (Bernard and Bradford Jensen, 1999; Alessandria and Choi, 2014).

Shocks, Adjustment Costs and Pricing to Market

The remaining parameters to calibrate are those related to trade, financial, and productivity

shocks, the pricing to market friction, and the adjustment costs for capital and debt. There are

ten parameters to be estimated. We jointly calibrate them to match ten moments. We present the

parameters and moments used for the identification in Panel C of Table 1. We display the values

of the calibrated parameters, together with the moment that is most relevant for the identification

of each parameter.

The volatility of the common productivity shock, identified mainly by the volatility of GDP

growth, is found to be 0.004. The estimated volatility of the differential productivity shock,

identified by the cross country correlation of the first difference of GDP, is 0.005. Given that

both processes have a persistence of 0.97, this implies that the differential component of the

productivity shocks slightly dominates the common one.

We follow Itskhoki and Mukhin (2021a) and identify the the volatility of the financial shock

using the Backus-Smith-Kollmann correlation. We find a value of 0.002 for the volatility of fi-

nancial shocks. Hence, the volatility of productivity shocks is estimated to be between 2 and 2.5

times larger than that of financial shocks. This is similar to Itskhoki and Mukhin (2021a), which

finds a value between 2.5 and 3.3.
36
The persistence of financial shocks is identified by the auto-

correlation of the interest rate differential. We estimate a persistence of 0.957, close to what has

been estimated in the literature.

We identify the volatility of trade shocks using the volatility of NT relative to the volatility of

the RER, similar to Itskhoki and Mukhin (2017) for the case of foreign demand shocks. The per-

sistence of the trade shock is identified by the contemporaneous correlation between the growth

36
Note that the model in Itskhoki and Mukhin (2021a) does not have trade dynamics.
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rates of NT and the RER. We find that the volatility and persistence of trade shocks are 0.052 and

0.971, respectively. Hence, trade shocks are found to be more volatile and persistent than pro-

ductivity and financial shocks. However, the propagation effects of trade shocks depends on the

value of the home bias parameters (𝛾 ). The ratio 𝛾𝜎𝜉 /𝜎𝜓 equals 2.52, similar to the values identi-

fied in Itskhoki and Mukhin (2017) for the ratio of the volatility of the foreign demand shock to

the financial shock, between 2.4 and 2.7.

The within-country elasticity of domestic to foreign trade costs, 𝜏 , is identified using the

cross-country correlation of the growth rates of domestic absorption. Since 𝜏 imposes a wedge

in the aggregation of intermediate goods, it affects the response of the supply of final goods to

trade shocks, ultimately impacting domestic absorption. We present a detailed analysis on the

role of 𝜏 in Section 7.

The adjustment cost of capital directly affects the volatility of investment relative to that of

GDP, while the adjustment cost of debt directly affects the autocorrelation of NT. We find an

adjustment cost of capital of 2.42 and and adjustment cost of debt of 0.0137. Finally, we discipline

the pricing to market friction using the correlation between the growth rates of the terms of trade

and the RER, since this friction induces a wedge between them. We find a value of 𝜁 = 0.966,
which implies an exchange rate pass-through of 68 percent, in line with the estimated values in

the literature (Gopinath and Itskhoki, 2010).

4.2 Alternative Models

We consider three alternative specifications to our benchmark model to understand the role of

each feature of our model: trade shocks, financial shocks, and dynamic trade. We recalibrate

models when one of these features is absent. The calibrated values of these models are shown in

Table F.2.

For the model without trade shocks, we set to zero the volatility and persistence of trade

shocks and the within-ROW trade cost, and recalibrate the remaining parameters. We target the

samemoments considered before, except for the volatility of NT, its contemporaneous correlation

with the RER, and the cross-country correlation of the growth rate of domestic absorption.
37,38

37
We exclude the cross-country correlation of domestic absorption from the target since the within-ROW trade

cost is absent in this model

38
We also show in Section 7 that a model without trade shocks but with a more sophisticated financial shock, in
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In the model without financial shocks, we set to zero the volatility and persistence of financial

shocks. We drop as targets the contemporaneous correlation between the growth rate of the RER

and NT, and their relative volatility.
39

For the model without dynamic trade, we set to zero the fixed costs of exporting for new

and incumbent exporters and the volatility of idiosyncratic shocks. Given these values, the other

parameters related to shocks and adjustment costs are estimated in the same way as in the bench-

mark model. We find a higher volatility and a lower persistence of both financial and trade shocks

in the model with no dynamics. Finally, in the model with no dynamics, the elasticity 𝜏 of the

within-ROW trade cost is estimated to be around half (0.089) of the value in the benchmark

model (0.17). This is because under dynamic trade, the responses of relative domestic absorption

and NT, are smaller on impact compared to the static trade model. Since higher 𝜏 also generates

smaller movements in these variables as discuss above, the model requires a smaller value of 𝜏 in
this static model.

5 Results

In this section, we present the results of our model. We first show that our benchmark model

successfully replicates the targeted moments, including the RER and NT moments at the high

frequency. We then show that the model is able to capture the RER and NT dynamics at the whole

spectrum of frequencies, in terms of their comovement and the frequency decomposition of the

variances. Finally, we show that the model accounts for the RER disconnect puzzles and standard

international business cycle moments. Throughout this section, we emphasize the importance of

including all three features—financial shocks, trade shocks, and trade dynamics—in the model to

effectively capture these patterns.

particular a mix of two AR(1) processes with different persistence’s, is still unable to capture the net trade moments

at the high frequency.

39
Alternatively, in the model without financial shocks we could drop the Backus-Smith-Kollmann correlation and

keep the contemporaneous correlation between the growth rate of the RER and NT. However, since trade shocks are

able to match the Backus-Smith-Kollmann correlation, due to the role of the within-ROW trade cost, we chose to

keep the Backus-Smith-Kollmann correlation and drop the contemporaneous correlation between the growth rate of

the RER and NT to show that this model also fails to capture the latter correlation. Hence, conditional on matching

the Backus-Smith-Kollmann correlation, in order to match the high frequency comovement between the RER and

NT we need both financial and trade shocks.
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5.1 The RER and NT at the High Frequency

The results of the benchmark model for the targeted moments are presented in Panel A of Table

2 (column 2). The model closely matches all of the targeted moments, such as the volatility

and cross-country correlation of output. It also successfully generates the imperfect correlation

between terms of trade and the RER.

More importantly, the benchmark model accurately reproduces the comovement of the RER

and NT at high frequencies. First, our model exactly matches the contemporaneous correlation

of the RER with NT, 𝜌 (Δ𝑛𝑡, Δ𝑞). In data, the RER and NT exhibits a relatively weak connection

at high frequencies, with a correlation of approximately 0.3. Our model successfully accounts for

this weak correlation. Both financial and trade shocks are necessary to capture this pattern. To

see this, consider two alternative models: the model without trade shocks (column 3 of Table 2)

and the model without financial shocks (column 4 of Table 2). When the model is recalibrated

without trade shocks, the correlation between two variables is too high (0.90) compared to data.

On the other hand, when financial shocks are absent, the correlation is too low (-0.77). This is

because financial shocks generate a positive correlation between the RER and NT upon impact,

whereas trade shocks lead to a negative correlation.
40

Second, our model successfully replicates the relative volatility of NT to the RER, 𝜎(𝑛𝑡)/𝜎(𝑞).
In the data, NT and the RER exhibit roughly equal volatility, withNT being 1.16 timesmore volatile

than the RER. Our model effectively captures this pattern. Again, it requires incorporating both

trade and financial shocks: in a model without trade shocks, the volatility of NT relative to the

RER becomes too high (1.87), while without financial shocks, this ratio decreases significantly

(0.27). That is, financial shocks generate too large volatility in NT relative to the RER. This excess

volatility induced by financial shocks has also been noted by Miyamoto, Nguyen and Oh (2022).

Hence, having both shocks is necessary for capturing the high frequency moments related to

the RER and NT.
41
For this reason, we focus on the results of models that include both financial

40
When Financial shocks generate an excess return on bonds for the US relative to the ROW, the excess savings is

exported to the ROW (US NT increases), US aggregate demand falls, and the US RER depreciates. On the other hand,

trade shocks that raise the relative cost of exporting for the US leads to a decline in its NT, and the supply of final

goods in the US increases, causing its price to fall (the US RER depreciates). See Section 6.2 for a detailed discussion

on the propagation mechanism of the two shocks.

41
Fukui, Nakamura and Steinsson (2023) also highlight that financial shock alone cannot capture the joint dynam-

ics of RERs and macro aggregates, although they focus on the matching of conditional moments.
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Table 2: Model Results

(1) (2) (3) (4) (5)

Moments Data Benchmark No Trade Shock No Financial Shock No Dynamics

A. Targeted Moments

𝜎(Δ𝑦) 0.007 0.006 0.007 0.007 0.008

𝜌(Δ𝑦, Δ𝑦∗) 0.40 0.40 0.40 0.37 0.40

𝜌 (Δ𝑐 − Δ𝑐∗, Δ𝑞) -0.10 -0.10 -0.10 -0.10 -0.10

𝜌 (𝑖 − 𝑖∗) 0.87 0.87 0.74 0.93 0.88

𝜌(𝑛𝑡) 0.98 0.96 0.97 0.98 0.95

𝜎(Δ𝑖𝑛𝑣∗)/𝜎(Δ𝑦∗) 2.59 2.59 2.74 2.60 2.59

𝜌(Δ𝑑, Δ𝑑 ∗) 0.34 0.34 0.27† 0.36 0.34

𝜌 (Δ𝑛𝑡, Δ𝑞) 0.30 0.30 0.90† -0.77† 0.30

𝜎(𝑛𝑡)/𝜎(𝑞) 1.16 1.16 1.87† 0.27† 1.17

𝜌(Δ𝑡𝑜𝑡, Δ𝑞) 0.49 0.49 0.49 0.49 0.49

B. Trade Elasticity

Short run 0.20 0.40 1.16 -0.41 0.36

(0.05)

Long run 1.16 1.00 1.83 -0.28 0.53

(0.25)

Adjustment 0.07 0.04 0.19 0.01 0.04

(0.02)

C1. Frequency Decomposition of RER

High frequency 0.08 0.07 0.09 0.05 0.06

Business cycle frequency 0.31 0.23 0.27 0.16 0.19

Low frequency 0.61 0.70 0.64 0.79 0.75

C2. Frequency Decomposition of NT

High frequency 0.06 0.08 0.07 0.06 0.09

Business cycle frequency 0.30 0.30 0.27 0.18 0.24

Low frequency 0.64 0.62 0.66 0.76 0.67

D. Disconnect Puzzles

𝜎(𝑞) 0.10 0.08 0.06 0.16 0.11

𝜎(Δ𝑞)/𝜎(Δ𝑦) 4.24 3.48 2.95 1.64 3.10

𝜌(𝑞) 0.97 0.97 0.94 0.99 0.98

𝛽𝑓 𝑎𝑚𝑎 -1.34 0.14 0.08 0.88 -4.34

𝑅2
𝑓 𝑎𝑚𝑎 0.04 0.001 0.001 0.89 0.49

𝜌(𝑞, 𝑖 − 𝑖∗) -0.30 -0.44 -0.35 -0.06 -0.20

𝜌(𝑖) 0.93 0.93 0.83 0.96 0.94

𝜎(𝑖 − 𝑖∗)/𝜎(Δ𝑞) 0.13 0.01 0.02 0.01 0.04

Notes: ‘No Trade Shock’ presents the result of re-calibrated model only with productivity and financial shocks. ‘No

Financial Shock’ presents the result of re-calibrated model only with productivity and trade shocks. ‘No Dynamics’

is for the model without fixed exporting costs and producer heterogeneity. Superscript † in Panel A denotes that the

moment is not targeted during the calibration procedure.
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and trade shocks in the remaining discussions of the paper.

5.2 Comovement between RER and NT

We show that the model is able to capture the comovement between the RER and NT at the

full range of frequencies without directly targeting them. First, we measure on the correlation

between the growth rates of the RER and NT at different horizons. Second, we estimate the

elasticity of NT to prices in the short and long run using an error correction model. Our main

finding is that, conditional on having both financial and trade shocks, dynamic trade is necessary

to capture the differential comovement between the RER and NT.

Dynamic Correlation

To capture the differential comovement between the RER and NT, consider the correlation

between the growth rates of the RER and NT at different horizons. In Figure 2, we plot the

correlation between the ℎ−quarter growth rates of the RER and NT in the data (solid black line).

While the contemporaneous correlation at ℎ = 1 is 0.30, the correlation gradually increases over

the horizon, reaching a value of 0.48 at the 8-quarter growth rate. The growth rates of RER and

NT present a stronger comovement in the longer than in the shorter run.

Figure 2: Dynamic Correlation between RER and NT Flows
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Notes: We calculate the dynamic correlations as 𝜌(Δℎ𝑞𝑡 , Δℎ𝑛𝑡𝑡 ), where 𝑞𝑡 and 𝑛𝑡𝑡 are log of the
RER and the export-import ratio, respectively. and Δℎ denotes ℎ−quarter difference.
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The benchmark model successfully captures the dynamic correlation between the RER and

NT, without being targeted except for the contemporaneous correlation (blue line with circles).

The contemporaneous correlation in the model is 0.30, while for the 8-period growth rate it is

0.43. Dynamic trade plays an important role for the ability of the model to capture this pattern.

To see this, consider a case under no trade dynamics (violet line with crosses). Absent trade

dynamics, the comovement becomes weaker as the horizon increases, meaning that the growth

rates of the RER and NT present a higher correlation in the long than in the short run. Hence,

dynamic trade, by inducing a lagged response of NT, allows the model to capture the differential

comovement between NT and the RER over time.
42

We also consider the cases in the absence of shocks. In Figure F.4, we plot the dynamic cor-

relation for the models with no financial and no trade shocks. Absent either financial (dashed

red line) or trade shocks (dash-dotted green line), the model fails to capture the differential co-

movement, even under dynamic trade. As before, we observe that financial shocks induce an

almost perfect correlation across the eight quarter horizon between these variables, while trade

shocks induce a strong negative one, although the correlation is increasing in this case as it is in

the data. This reinforces our result that both shocks are needed for capturing the comovement.

Therefore, conditional on having both financial and trade shocks, dynamic trade is necessary to

capture the differential co-movement observed in the data.

Dynamic Trade Elasticity

To examine the predictions of the model regarding the comovement between the RER and

NT across all frequencies, we estimate the elasticity of NT to prices in both the short and long

run. To do so, we leverage the relationship between prices and NT based on the Armington trade

model.

The Armington model, which is also nested within our benchmark model, serves as the basic

trade block for almost all multi-good international macro models. From the demand structure

of the Armington model, NT can be expressed as a function of the RER, the terms of trade and

42
We also consider using the trade-expenditure ratio as a measure of NT, defined as 𝑇𝐸𝑡 = log 𝑋𝑡

𝑀𝑡
− log 𝐷∗

𝑡
𝐷𝑡 . Using

the trade-expenditure ratio allows us to isolate the substitution effect that changes in the RER generate on NT from

the effect on relative expenditure. As shown in in Figure F.3, the RER and NT present a stronger comovement in

the long run than the short run even after controlling for relative expenditure. Our model successfully captures this

pattern.
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domestic absorption.
43
We estimate an error correction model of this relationship:

Δ𝑛𝑡 = 𝛽+𝜌𝑆𝑅 Δ(𝑡𝑜𝑡𝑡 + 𝑞𝑡) + Δ(𝑑 ∗
𝑡 − 𝑑𝑡)

− 𝛼[𝑛𝑡𝑡−1 − 𝜌𝐿𝑅 (𝑡𝑜𝑡𝑡−1 + 𝑞𝑡−1) − (𝑑 ∗
𝑡−1 − 𝑑𝑡−1)] + 𝜀𝑡 (7)

where 𝑛𝑡𝑡 = ln(𝑋/𝑀) is log of NT, 𝑡𝑜𝑡𝑡 = ln(𝑝𝑀𝑡 /𝑝𝑋𝑡 ) is the log of the terms of trade, 𝑞𝑡 is the log
of the RER, and 𝑑𝑡 = ln(𝐶𝑡 + 𝐼𝑡) and 𝑑 ∗

𝑡 = ln(𝐶 ∗
𝑡 + 𝐼 ∗𝑡 ) are the log of domestic absorption in the

domestic and foreign country. Here, 𝜌𝑆𝑅 is the short-run elasticity, 𝜌𝐿𝑅 is the long-run elasticity,

and 𝛼 captures the speed of adjustment. The term in square brackets captures the cointegration

relationship implied by the Armington model,

𝑛𝑡𝑡 = 𝜌 (𝑡𝑜𝑡𝑡 + 𝑞𝑡) + (𝑑 ∗
𝑡 − 𝑑𝑡).

This type of regression has been widely used in studies of trade dynamics (Hooper et al., 2000;

Marquez, 2002; Alessandria and Choi, 2021; Alessandria et al., 2022).

Using the data described in Appendix A, we estimate Equation 7, and present the results in

Panel B of Table 2. The short-run elasticity is estimated to be around 0.2, while the long-run elas-

ticity is larger, around 1.2. The estimated values are similar to the estimates from Alessandria and

Choi (2021) that covers a similar time period for the US, and are also consistent with Alessandria,

Bai and Woo (2022) which uses panel data of a broader set of countries, although their size of the

long-run elasticity is slightly larger compared to our estimates.

Using the model simulated data, we conduct the same exercise in our benchmark model (col-

umn 2). We estimate a long run elasticity 𝜌𝐿𝑅 that is is larger (1.00) than the short run 𝜌𝑆𝑅 (0.40),
capturing the dynamic adjustment of NT to prices.

44
Trade dynamics are crucial for capturing

the difference between short and long run elasticity. In column 6, we present the result for the

model without trade dynamics. The short run elasticity is estimated to be 0.36, and the long run

elasticity is 0.53. Although there is a small gap between two elasticities due to the effect of trade

shocks, the difference between them is significantly smaller than in the benchmark model. We

43
See Appendix F for the derivation of NT equation in the benchmark model and its comparison with the Arm-

ington model.

44
In Section 7 we present a specification in which we target these elasticities. This alternative specification gen-

erates similar results as in our benchmark case.
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conclude that dynamic trade, by generating a slow moving distribution of exporters in response

to shocks, allows the model to capture the differential comovement between the RER and NT

significantly better than in the model without dynamics.
45

Moreover, similar to our analysis of the correlation of the growth rates of the RER and NT

at different horizons, we find that both trade and financial shocks are necessary to capture the

differential elasticity. Absent any of these shocks, the model’s ability to capture the short and

long run elasticity of the data deteriorates. Absent the trade shock, both elasticities are too high,

whereas absent the financial shock both are too low. Therefore, conditional on having both fi-

nancial and trade shocks, dynamic trade is necessary to capture the differential elasticities of NT

to prices.

5.3 Spectrum Analysis

We now turn to study the ability of the model to capture the spectrum of the RER and NT flows,

which are not targets in our calibration. We consider the spectrum to study the dynamics repre-

sented at the frequency domain instead of the time domain. It is useful since it allows to decom-

pose the variance of these variables into different frequencies. That is, the sum of the spectrum for

all frequencies equals its unconditional variance. We estimate the spectrum non-parametrically

using the modified Bartlett kernel. For the details on this approach, see Appendix B.

Figure 3 shows the spectrum of the RER in the data (black solid line). We find that the spectrum

is the highest at the zero frequency, and decreasing as the frequency increases. The standard

business cycle frequency, cycles between 8 to 32 quarters, is represented by the shaded grey area.

The area under the spectrum for the frequency lower than the business cycle is much larger than

that for the frequency of business cycles. In particular, it takes about 61 percent of its variance,

as presented in Panel C1 of Table 2 (column 1).

We now turn to estimate the spectrum of the RER using model simulated data.
46
The bench-

mark model (blue line with circles) captures well the size and shape of the spectrum of the RER,

45
We do not consider a model without trade dynamics and trade shocks, since in that case the short and long-run

trade elasticities will be the same, and equal to the Armington elasticity of 1.5, as can be inferred from equation 6. For

the same reason, the model in Section 7 where we drop the trade shock but allow for a more sophisticated financial

shock does not capture the differential trade elasticity.

46
We simulate the model for 10,000 periods and burn the first half. We show in Sections 7 and E.2 that the result

is robust to using multiple samples of shorter periods.
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even though it is not a target in our calibration. The model spectrum lies slightly under the data

one, reflects that the volatility of the RER is slightly smaller in the model (0.08) than in the data

(0.10) (Panel D of Table 2). Moreover, the shape of the spectrum is very similar to the data. This

can be mapped to the share of the variance of the RER arising at different frequencies, which is

displayed in Panel C1 of Table 2. In the model, the largest share (70 percent) of the RER variation

is assigned to the low frequency, followed by the business cycle frequency (23 percent), and then

the high frequency (7 percent).

Figure 3: Spectrum of the RER
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The full graph is presented in Figure B.1. Gray area shows the range of the frequencies for

the business cycle. The blue line with circles shows the result in the benchmark model, while

the violet line with crosses shows the result of the model recalibrated with no sunk cost of

exporting.

Dynamic trade plays an important role in matching the shape of the RER spectrum. To see

this, consider the re-calibrated model without dynamic trade (violet line with crosses). It is evi-

dent that the overall size and the shape of the RER spectrum in this model is worse than in our

benchmark case. The unconditional volatility in the model is higher than in the data, 0.11 and

0.10 respectively. Moreover, a larger share of the RER variance is attributed to the low frequency

(75 percent) than in the benchmark model (70 percent). This result is consistent with the “Excess

Persistence Puzzle,” documented in Rabanal and Rubio-Ramirez (2015). The intuition for this re-

sult is the following. When trade is static, quantities in the short run are more elastic than under
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dynamic trade. Therefore, prices in the short run have a weaker response absent trade dynamics,

so a higher share of the RER variance is assigned to low frequency fluctuations. Once we in-

corporate dynamic trade, quantities in the short-run are more inelastic and prices need to adjust

more to clear the market. This leads to a redistribution from the lower to the higher frequencies.

Finally, we show in Panel C2 of Table 2 the decomposition of the spectrum of NT. The bench-

mark model generates a spectrum decomposition very close to the data. The low frequency vari-

ation in the model is 0.62, very close to the 0.64 in the data. We notice that the model without

dynamic trade generates a share of low frequency variation of 0.67, larger than the data.
47

5.4 Disconnect with Macro Fundamentals

Having shown the success of the benchmark model in accounting for the variation in the RER

and NT at the full range of frequencies, we now show that the model also captures the RER

disconnect, both with real and financial variables. There are several moments related the RER

and macro fundamentals, so called puzzles, that have been hard to explain in most models. Our

benchmark model is able to account for them. The results are presented in Panel D of Table 2.

First, there is an empirical disconnect between the RER and output, i.e. the real disconnect,

that the literature have struggled to reproduce. In particular, in the data the RER follows a near

random-walk process and is three to six times more volatile than output (Meese-Rogoff Puzzle).

We also find these patterns in our data, since the volatility is around four times larger than output,

and the RER is highly persistent. In a standard BKK-type models, the volatility is lower than that

of output, and the process is far from a randomwalk. However, ourmodel successfully reproduces

the data patterns. As shown in the second column, the volatility and persistence of the RER

are very close to the data.
48

Note that these moments are not targeted during our calibration

procedure.

47
Since dynamic trade makes quantities traded across countries more inelastic in the short-run, one would expect

NT to experience larger lower frequency variation relative to the static trade case. The results from the spectrum

decomposition of NT in Panel C2 of Table 2 seems to suggests the contrary. In Appendix D, we show that this arises

from a calibrated lower adjustment cost of net foreign assets in the static trade model. When we set the adjustment

cost to be the same as in the dynamic trade model, we find that the low frequency share of variation in NT flows is

significantly lower under static trade (0.54) than under dynamic trade (0.62).

48
Not surprisingly, the model generates a half-life of the RER almost identical to its data counterpart. We show in

Figure F.6 that the IRF of the RER from the estimated AR(1) process of the RER in the data and in the model simulated

data are very close.
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Second, the empirical correlation between the growth rates of relative consumption growth

and the RER is negative in the data. However, the risk-sharing condition in BKK-type models

usually implies that high relative consumption is associated with a depreciation of the RER, gen-

erating a correlation close to one (Backus-Smith-Kollmann Puzzle).
49

It is important to notice

that even under under incomplete markets, in the presence of a risk-free bond, the models usu-

ally predict an almost perfect correlation between the cross-country consumption growth and

changes in the RER. Our model is able to reproduce this puzzle by directly targeting the correla-

tion during the calibration. As shown in Panel A of Table 2, the correlation between cross-country

consumption growth and RER growth is -0.10, in both data and the benchmark model.

The ability of the benchmarkmodel to account for the disconnect between the RER and output

and consumption is not compromised by the presence of trade shocks or dynamic trade, as can

be seen from columns 3 to 5 in Table 2 under Panel D. Furthermore, the presence of trade shocks

improves the quantitative properties of the model, particularly those related to the level of the

RER. With the addition of trade shocks, not only does the autocorrelation 𝜌(𝑞) increase and align
more closely with the data, but the volatility 𝜎(𝑞) also rises, matching that observed in the data.

Furthermore, the model is able to capture the real disconnect even without financial shocks.

Even though the volatility of the first difference of the RER falls absent the financial shocks, the

volatility of the level of the RER increases by even more than in the data. This is not surprising

given that trade shocks affect the RER more in the long run. This implies that trade and financial

shocks alone can account for most of the disconnect between the RER and consumption and

output, although both of them are needed to capture the joint variation of the RER and NT at

high frequencies.

We now turn to the results related to the financial disconnect. It is well known that real

interest rate differentials are not well connected to the changes in the RER. The disconnect can

be summarized by the regression similar to Fama (1984),

𝔼𝑡 [Δ𝑞𝑡+1] = 𝛼 + 𝛽𝐹𝑎𝑚𝑎(𝑖𝑡 − 𝑖∗𝑡 ) + 𝑢𝑡+1. (8)

In standard models, the Fama coefficient would be close to 1, since no arbitrage condition im-

49
See Backus and Smith (1993) and Kollmann (1995).
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plies that high interest rates predict depreciations of the RER. However, in the data, interest rate

differentials tend to predict appreciations of the RER. More importantly, the predictive power of

interest rates is weak, as measured by an 𝑅2
close to zero.

50
Engel, Kazakova, Wang and Xiang

(2022) emphasizes that the low 𝑅2
of the Fama regression is amore robust statistic for the financial

disconnect than the negative coefficient on the interest rate differentials.

The results are shown in Panel D of Table 2. We find in our data that the Fama coefficient is

negative, with a large standard error, and the 𝑅2
close to zero. Our benchmark model (column

2) is able to generate a Fama coefficient lower than one and, more importantly, an 𝑅2
near zero,

showing that the model is able to account for the financial puzzle. In other words, the financial

moments are not compromised by the presence of trade shocks or dynamic trade. Finally, absent

the financial shock (column 4), the Fama coefficient and the 𝑅2
increases significantly, showing

the importance of financial shocks for capturing the financial disconnect, consistent with the

results in Itskhoki and Mukhin (2021a, 2023).
51,52

5.5 International Business Cycle Moments

Our benchmark model is also consistent with the standard international business cycle moments.

We report the results in Table 3. The model is able to capture a volatility of consumption that is

lower than output. It generates a cross country correlation of consumption and investment very

close to the data. Overall, we find that our benchmark model accounts for the dynamics of the

RER and NT at the whole spectrum of frequencies, without compromising the ability to account

for the real and financial puzzles, and other international business cycle moments.

50
Strictly speaking, the Fama regression is used to show the disconnect in nominal variables, also known as the

Forward Premium Puzzle. In this paper we consider a real version of the puzzle. In Table F.4 in Appendix H we

present the Fama coefficient we find using both real and nominal data, which is very similar to each other. This

arises from the high correlation between the RER and the NER, due to the low inflation in our sample.

51
Potentially, trade shocks (and productivity shocks) could account for the financial disconnect, since they gen-

erate changes in net foreign assets that induce UIP deviations through the adjustment cost of debt (Equation 1).

However, we find that this indirect effect of the other shocks is quantitatively small.

52
For the model without trade dynamics, we find an 𝑅2

of 0.65. This is in part driven by estimating significantly

higher adjustment costs of capital in this model. Absent capital adjustment costs, the 𝑅2
and 𝛽 equals 0.02 and -0.85

respectively.
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Table 3: International Business Cycle Moments

(1) (2) (3) (4) (5)

Data Benchmark No Trade Shock No Financial Shock No Dynamics

𝜎(Δ𝑐)/𝜎(Δ𝑦) 0.83 0.62 0.68 0.58 0.67

𝜌(Δ𝑦, Δ𝑐) 0.68 0.90 0.95 0.98 0.93

𝜌(Δ𝑦, Δ𝑧) 0.77 0.84 0.94 0.97 0.90

𝜌(Δ𝑐, Δ𝑐∗) 0.31 0.48 0.32 0.45 0.43

𝜌(Δ𝑖𝑛𝑣, Δ𝑖𝑛𝑣∗) 0.31 0.31 0.25 0.34 0.31

𝜎(Δ𝑡𝑜𝑡)/𝜎(Δ𝑞) 0.46 0.02 0.02 0.12 0.06

𝜌(Δ𝑡𝑜𝑡, Δ𝑞) 0.49 0.49 0.49 0.49 0.49

𝜌(Δ𝑛𝑡, Δ𝑡𝑜𝑡 + Δ𝑞) 0.31 0.31 0.90 -0.71 0.25

𝜌(𝑛𝑡, 𝑡𝑜𝑡 + 𝑞) 0.30 0.30 0.86 0.85 0.23

𝜌(𝑖 − 𝑖∗, 𝑡𝑜𝑡 + 𝑞) -0.29 -0.44 -0.34 -0.04 -0.22

6 Quantifying the Effect of Financial and Trade Shocks

Using our benchmark model, which provides a unified framework to study the dynamics of the

RER at all frequencies, we evaluate the role of trade and financial shocks in shaping the dynamics

of the RER. First, we compute the contribution of each shock for the error forecast variance of

the RER at different horizons. Second, we present the impulse response functions of variables of

interest to trade and financial shocks.

6.1 Conditional Variance Decomposition

We inspect the relevance of each shock for driving the variation in the RER by computing the

contribution of each shock to the ℎ−quarter ahead error forecast variance of the RER. The results
are presented in Table 4. It is clear that the trade shock explainsmost of the error forecast variance

of the RER in the long-run (i.e. low frequency), while the financial shock is important for the

short-run (i.e. high frequency) fluctuations.

In particular, the financial shock explains 63 percent of the one-quarter ahead error forecast
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variance, with the trade shock explaining around 35 percent. Hence, at the high frequency, fi-

nancial shocks matter more than trade shocks for explaining the variation of the RER. However,

when focusing at the eighty quarters ahead error forecast variance of the RER, the trade shock

explains around 65 percent, while the financial shock explains 26 percent. Hence, trade shocks

matter more than financial shocks for the variation in the RER at lower frequencies. Since, 61

percent of the overall variance of the RER is at frequencies lower than business cycles, we find

that trade shocks are crucial for capturing the overall variation in the RER.

We find consistent results using the analysis at the frequency domain. In particular, we con-

duct a spectral analysis of the model for the counterfactual cases where only the trade or the

financial shock is present under the identified parameters of the benchmark model. We find that

in the case of only trade shocks, the volatility is only slightly smaller than in the benchmark,

shown by the total area below the spectrum. Furthermore, the shape of the spectrum follows

very closely that of the benchmark model. However, having only financial shocks largely misses

the size of spectrum. For more details, see Figure F.5 and Table F.3.

Table 4: Conditional Variance Decomposition (%)

quarters = 1 8 32 80

Financial shock 62.6 46.6 25.8 25.7

Trade shock 34.5 48.4 65.1 64.5

Productivity shock 2.9 5.0 9.1 9.8

6.2 Inspecting the Financial and Trade Shock Mechanism

We now turn to study the propagation mechanism triggered by financial and trade shocks in

more detail. For this purpose, we present the impulse response functions of relative domestic

absorption, NT and the RER to the two types of shocks in Figure 4.

First, consider the effect of a financial shock that increases the return on bonds for the ROW

(red line with dots). Since households in the ROW face a higher return on bonds, they optimally

decide to increase their savings. Hence, domestic absorption in the ROW falls relative to the
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US. Due to the presence of home bias in expenditure, the fall in demand of ROW households

translates into a stronger shortage in demand for intermediate goods in the ROW than in the US.

For markets to clear, the price of ROW intermediate goods must fall, so that the US increases its

expenditure in ROW intermediates. As a consequence, NT for the ROW increase, while at the

same time the RER depreciates. In particular, a one standard deviation financial shock generates

a 1.6 percent depreciation of the RER on impact and a 2.19 percent increase in NT.

Figure 4: Selected IRFs to Trade and Financial Shocks (%)
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Due to dynamic trade, domestic absorption and trade flows take time to respond, leading to

hump shaped responses, peaking two quarters after the shock. On the other hand, prices adjust

without any delay. This contributes to a lagged response of NT relative to the RER. Eventually,

households in the ROW consume their initial savings, so that NT becomes negative, around 5

years after the shock. Higher domestic absorption in the ROW induce an upward pressure on

ROW prices, which translates into an appreciation of its RER relative to the pre-shock value.

Next, we study the effect of a trade cost shock that increases the cost of exporting for the ROW

relative to the importing cost (green line with 𝑜). A higher exporting cost in the ROW generates

a fall in NT. Larger inflows of foreign intermediates, together with smaller outflow of domestic

intermediates, increases the supply of final goods in the ROW. These effects evolve gradually over

time due to the dynamic nature of trade. For markets to clear, the ROW final good price must fall.

Consequently, domestic absorption in the ROW increases and the RER depreciates. In particular,

a one standard deviation trade shock generates an almost 1.2 percent depreciation of the RER on

impact and a 1.52 percent decrease in NT on impact. Note that both magnitudes are smaller (in
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absolute terms) than under financial shocks, allowing the model to generate an unconditional

correlation between the growth rates of NT and the RER that is slightly positive (0.30). This also

explains why financial shocks drive most of the variation of the RER at higher frequencies. Over

time, domestic absorption in the ROW falls to repay the debt used to finance the negative NT

flows in the short run, triggering an increasing path of NT flows.

Finally, as can be seen from the last panel, trade shocks induce more persistent effects on

the RER than financial shocks. It is worth noticing that it is the effect of trade shocks that is

more persistent and not the process itself. In fact, the calibrated persistence of the financial and

trade shocks are very similar (𝜌𝜓 = 0.957 for financial shocks; 𝜌𝜉 = 0.971 for trade shocks).
53

Trade shocks induce a more persistent effect on the RER mainly due to its persistent effect on

the resource constraint.
54
It is important to notice that the lack of dominance of financial shocks

in explaining RER variation in the long-run does not longer hold absent the trade shock: in the

model without trade shocks, most of the RER variation is driven by financial shocks across all

frequencies, with productivity shocks explaining a small share of its variation.
55

Overall, our

results suggest that financial shocks matter more than trade shocks for the dynamics of the RER

in the short run, while the opposite is true for the longer run.

7 Sensitivity and Robustness

In this section, we explore the sensitivity and robustness of our quantitative results. First, we

provide a detailed analysis of the role of the elasticity of domestic to foreign trade costs, 𝜏 , and
further consider a model when the elasticity is zero. Next, we consider alternative estimation

methods, namely Bayesian estimation and using small sample simulations. We show that we

obtain similar estimates of parameters compared to those under the Benchmark model in Section

4.1. We also examine the robustness of our results to different model specifications, including

modeling of dynamic trade, a three-country model, common shocks to trade costs, investment

adjustment costs, a case where we target the short and long run trade elasticity, and a model

53
If we set the persistence of both shocks to be the same (either both equal 0.957 or 0.971) while keeping all the

other parameters constant, we still find stronger effects of financial shocks in the short run (more than 50 percent),

and stronger effects of trade shocks in the long run (more than 50 percent).

54
In Appendix G we present an analytical solution to a simplified model to illustrate the role of the resource

constraint channel of trade shocks.

55
See Table F.5 for the conditional variance decomposition of the RER in the model without trade shocks.
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without trade shocks but with a more sophisticated financial shock. Overall, our findings are

robust across these models, while the benchmark model tends to better capture the dynamics

of key variables compared to the alternative specifications. Moreover, we find that trade shocks

drive most of the variation in the RER at low frequencies in all of the alternative models. More

detailed descriptions are provided in Appendix E.

Within-ROW Trade Costs

We first analyze in detail the nonzero trade cost within ROW countries and develop intuition

on the role of the elasticity 𝜏 . Figure 5 displays the IRFs of relative domestic absorption, NT, and

the RER to a shock that increases the shipping cost from the ROW to the US (an increase in 𝜉 ) for
different values of 𝜏 , while keeping constant the other calibrated parameters. When 𝜏 = 0 (the

dashed line), a positive trade shock, which increases the cost of the ROW exports and decreases

its import costs, triggers a fall in NT for the ROW. The increase in imports for the ROW raises

the supply of final goods in the ROW. This effect is reinforced by an increase in the use of ROW

intermediates for the production of final goods, due to the increase in exporting costs. Formarkets

to clear, the final good price in the ROWmust fall for domestic absorption to increase, inducing a

depreciation of the RER. Now, consider the case of a positive but small value of 𝜏 = 0.17 (line with
circles). With a positive 𝜏 , when the cost of exporting from the ROW to the US increases, there

is also a small increase in the marginal trade cost within the ROW, between its intermediate and

final good producers. This makes exporting for the ROW relatively more attractive than under

zero 𝜏 , so that the fall of net exports is smaller. This implies that the fall in the final good price

needed to clear the markets is weaker, so that in equilibrium there is a smaller depreciation of the

RER and a weaker increase in domestic absorption.
56

If 𝜏 is sufficiently high, NT for the ROW

can be positive with domestic absorption in the ROW decreasing relative to the US (dash-dotted

line with 𝜏 = 0.50).
It is clear that the cross-country correlation of the first difference of domestic absorption is

sensitive to the choice of 𝜏 . Figure 6 shows this by displaying the cross country-correlation of

the first difference of domestic absorption across different values of 𝜏 . We use this correlation to

identify the size of 𝜏 , as was briefly mentioned in Section 4. In our calibration, we find a value of

56
A smaller response of relative consumption in the ROW relative to the US also contributes to generating a small

value of the Backus-Smith-Kollmann statistic.
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Figure 5: IRFs to Trade Shock for Different Values of 𝜏 (%)
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Notes: The rest of the parameters are set as in Table 1.

𝜏 of 0.17. Moreover, in Appendix C, we provide external evidence supporting a positive elasticity

using bilateral data on trade flows.

To see role role of 𝜏 in a full model, we look at the results of the nested model with zero

domestic trade costs. The details of this exercise are displayed in Appendix E.5. We exogenously

set 𝜏 = 0 and do not target the cross country correlation of domestic absorption. The calibrated

parameters and resulting moments are reported in Tables E.5 and E.6 under ‘𝜏 = 0.’ This model

generates a worse fit for the Backus-Smith-Kollmann correlation and the cross country corre-

lation of domestic absorption. Thus, 𝜏 matters for accounting for the Backus-Smith-Kollmann

puzzle and the cross country correlation of domestic absorption. In terms of the untargeted mo-

ments, we notice that the model is able to generate a differential short and long run elasticity of

trade to prices, but both elasticities are higher than in our benchmark model. Finally, the contri-

bution of financial and trade shocks to the variation in the RER are very similar to our benchmark

model (see Table E.7).

Bayesian Estimation

We estimate the model using Bayesian methods along with four data series: US GDP, ROW

GDP, NT and the RER. Details about the Bayesian estimation are provided in Appendix E.1. Over-

all, we find that the estimated parameters are very similar to those obtained from our benchmark

model in Section 4.1. We present the estimated parameters in Table E.1. Moreover, we find that
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Figure 6: Identification of 𝜏
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Notes: Correlation of the cross country growth rates of domestic absorption be-

tween the US and ROW given different values of 𝜏 . The other parameters are set

as in Table 1. Based on model simulation of 10,000 periods. Black dashed line is

the correlation in the data.

the dynamic trade model is preferred to the static trade model. That is, the model with dynamic

trade has a better fit, as shown by the log data density higher in the dynamic trade model than

the static trade model. This is consistent with our results from Section 5.3 and Section 5.2, where

we argue in favor of the dynamic trade model.

To study the role of each shock in shaping the variation of the RER, we consider the counter-

factual path of the RER, when it is driven by only one of the estimated shocks. The counterfactual

RER under only trade shocks tracks closely the actual path of the RER across the whole time pe-

riod. With only financial shocks, the RER follows a similar path up to the early 2000s, but not

after that. Productivity shocks do not seem to generate a path for the RER closely related to the

data. Overall, trade shocks generate a path of the RER that most closely tracks the actual data.
57

Finally, we compute the variance decomposition of the RER using the estimated parameters, and

find similar results as in our benchmark model (see Table E.3). Thus, we find that trade shocks

are crucial to capture the dynamics of the RER.
58

57
In Table E.2, we show that the correlation between the actual RER and the counterfactual under only trade shocks

is 0.83. Under only financial shocks, the correlation is slightly lower, 0.73. The correlation under only productivity

shocks is -0.20.

58
This is consistent with the message in Rios-Rull, Santaeulalia-Llopis, Schorfheide, Fuentes-Albero and Khrysko

(2012) that argues that it is not the choice of quantitative methodology that is responsible for empirical findings,

but rather the data employed in the identification. Data on NT is key to the identification of parameters relevant to
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Short Sample Simulations

As opposed to our Benchmark case where the simulation is based on one long-period sample,

we estimate the model using multiple samples consisting of shorter periods. Specifically, we run

simulations of 160 periods, to be consistent with our quarterly data during 1980Q1-2019Q4, and

take average over the moments calculated from each simulation. More details are presented in

Appendix E.2.

The parameters and their calibrated values are presented in Table E.5 under ‘Short.’ The es-

timated parameters are almost the same as the Benchmark case. This is because the moments

calculated from multiple short-samples are very similar to those from one long-sample. If any-

thing, the estimates for the autocorrelations are slightly smaller in short samples, due to the well

known fact that least square estimates of AR(n) models are biased, although consistent (Marriott

and Pope, 1954; Kendall, 1954). However the differences are negligible, and the model result again

shows that trade shocks play a crucial role for low fequency dynamics of the real exchange rate.

Specification of Dynamic Trade

To explore the robustness of our specification of dynamic trade, we consider an alternative

way of modeling it. In particular, we introduce adjustment costs in the use of imported inputs

in the final good aggregator, as in Erceg et al. (2006), Rabanal and Rubio-Ramirez (2015) and

Gornemann et al. (2020) (see Appendix E.3 for details.). This is a reduced form way of generating

a differential long- and short-run trade elasticity without dynamic decisions of heterogeneous

firms. We identify the adjustment cost using the estimated speed of adjustment of NT to prices

in the data.
59
The parameters and calibrated values are presented in Table E.5 under ‘Input Adj.’

The alternative model generates similar targeted and untargeted moments as in the bench-

mark model (see Table E.6). It is able to generate a differential short and long run trade elasticity

to prices. However, the long-run trade elasticity is lower than in our benchmark model. We find

that the low frequency share in the spectrum of the RER is higher than in our benchmark model.

Finally, we find a stronger effect of financial shocks on the RER in the short run, relative to our

benchmark model, as measured by the variance decomposition of shocks (Table E.7). However,

in the long run we find similar effects of trade shocks on the RER as in our benchmark model.

capture the dynamics of the RER at the whole spectrum of frequencies.

59
The speed of adjustment is captured with the parameter 𝛼 in the ECM equation 7, which is estimated to be 0.07.
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Three Country Model

We verify the claim that the within-ROW trade cost elasticity captures the cost of trade be-

tween countries that compose the ROW. We consider the world consisting of three countries,

where one of them is the US and the remaining two countries are aggregated as a ROW. The

details are presented in Appendix E.6.

We show that changing the elasticity of trade cost between the two ROW countries to trade

costs against the US generates similar results as varying the domestic trade cost elasticity in the

two country model. That is, a higher elasticity of trade costs between the ROW countries in

response to higher export costs to the US dampens both the effect of trade cost shocks on relative

domestic absorption and the RER.

Common Trade Costs

It is well known that the scale of trade as a share of GDP formost countries has been increasing

significantly since the fall of the Bretton Woods system in 1973. A large part of this increase

can be attributed to the reductions in intratemporal trade frictions across countries, induced by

technological progress and policies promoting free trade (Alessandria, Bai and Woo, 2022). The

frequent and significant changes in the trade costs of most countries, in fact, are the main reasons

for the fluctuations in relative trade costs across countries. While we captured the differences in

these costs in our benchmark model, we study the robustness of our specification to include a

common component between the ROW and the US.

Specifically, we consider a shock to common trade cost, which affects the US and ROW in

tandem, in addition to the shocks to differential trade costs. The sum of common and differential

components will be the process of the country-specific trade costs. The details of this robustness

check are presented in Appendix E.4. We find that the results are similar to the benchmark model,

although the common trade cost shock increases the volatility of macro aggregates relative to the

benchmark case, consistent with the findings in Alessandria, Kaboski and Midrigan (2013b) in the

absence of inventories.

Investment Adjustment Costs

We consider investment, as opposed to capital, adjustment costs since the two types of costs

generate different responses to shocks (e.g. hump-shape investment responses under investment
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adjustment costs) which potentially matters for the co-movement of variables of interest. The

details are presented in Appendix E.7. We consider the specification in Christiano, Eichenbaum

and Evans (2005) and calibrate the parameters in the same way as in the benchmark model. The

results are presented in Tables E.5 and E.6, under ‘Inv Adj’. Overall, the calibrated parameters

and the results of this model are very similar to the benchmark model, including the volatility of

investment. We find that this model generates a higher share of the variance of the RER for the

low frequency than in the benchmark model. Finally, we find a similar contribution of financial

and trade shocks to the variation in the RER at different horizons (see Table E.7). Overall, our

main results are robust to this alternative specification of investment adjustment cost.

Sunk Exporting Cost and Trade Elasticity

In our benchmark model, the trade elasticity is larger in the long run than in the short run,

correctly displaying the J-curve feature. However, because we are restricting the elasticity of

substitution to be 𝜌 = 1.5 as in Itskhoki and Mukhin (2021b) and fixed costs of exporting to be

consistent with firm level data, there are slight disparities from the values of the short and long

run trade elasticity in the data. We show that by varying these three parameters, we can improve

the fit of these long- and short-run trade elasticities. To do so, we jointly estimate the elasticity of

substitution and fixed exporting costs alongwith other parameters and target ECMestimates. The

details are in Appendix E.8. As shown in Table E.6 under ‘TE,’ we get the elasticities much closer

to data. This is driven by higher sunk costs and a larger elasticity of substitution, as presented

in Table E.5. Finally, we find that financial shocks increase their importance in driving variation

in the RER across all horizons relative to the benchmark model (see Table E.7), although we still

find that trade shocks are the dominant shock in the long run.

A More Sophisticated Financial Process

We show that our result that trade shocks are needed to match the RER and NT moments at

the high frequency is robust to considering a more sophisticated financial process. In particular,

we allow the financial shock to be the mix of two AR(1) processes, each of them with a different

persistence. The details are in Section E.9. This model fails to capture the RER andNTmoments at

the high frequency because both processes trigger a positive comovement between the RER and

NT on impact, as shown in Figure E.6. As a consequence, the model cannot match the weak high
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frequency correlation. Moreover, conditional on matching the other target moments, the model

generates an excess volatility of NT at the high frequency. Finally, the model fails to generate a

short and long-run trade elasticity close to the data. Hence, the main results of the paper hold

under this more sophisticated financial process.

8 Concluding remarks

In this paper, we present a comprehensive analysis of the dynamics of the RER and NT flows by

integrating financial shocks, trade shocks, and dynamic trade into a standard international business

cycle model. Our analysis shows the necessity of incorporating all of these three features to

capture the joint dynamics of the RER and NT across the frequency domain, while still accounting

for the major RER puzzles and business cycle moments.

In line with existing literature, we find that financial shocks are important for explaining

the variation in the RER at higher frequencies, especially for the financial disconnect. However,

our novel contribution lies in demonstrating the critical importance of trade shocks in capturing

movements of the RER and NT flows. Given that 61 percent of the RER unconditional variance is

attributed to the low-frequency movements, trade shocks are essential to account for its overall

dynamics.

While this study represents substantial advances in our understanding of the factors shap-

ing the RER and NT dynamics across various frequencies, it also highlights avenues for future

research that warrant exploration. Specifically, further investigation is necessary to refine the

measurement of financial and trade shocks, and shed light on their sources of variation. Our

analysis suggests that extending the work that focuses on the dynamics of trade shocks would be

very valuable. Finally, while we have treated financial and trade shocks as independent, it is also

conceivable that they share common underlying causes.
60

Addressing these unresolved issues

will deepen our understanding of the RER and NT dynamics and provide further insights about

their nature.

60
For example, Costinot, Lorenzoni and Werning (2014) show that intertemporal policy, such as capital controls,

have similar implications as intratemporal trade policy in terms of policy outcomes.
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Appendix

A Data Description

In this section, we describe the data sources and how we construct the variables for our calibra-

tion.

• Period: 1980Q1 - 2019Q4, quarterly

• ROW: Trade-weighted average of 10 Countries

– Countries: Canada, Finland, Germany, Ireland, Italy, Japan, Republic of Korea, Spain,

Sweden, United Kingdom. These countries account for 60 percent of total US trade.

– Weights: Country-specific average of the sample period (Federal Reserve). While the

weights are updated every year, we use the constant weights using country-specific

average during our sample period. For countries in Euro Area after 1999, we allocate

the weights for the total of Euro Area into these countries using the average distribu-

tion within Euro Area during 1980-1999.

– We check the robustness of the empirical moments across using other weights than

average trade. Moreover, we consider adding China into the sample, although data

for China is available only after 1990. Table A.1 shows that the moments we consider

are similar across these variations.

• US interest rate: Effective federal funds rate (IMF), deflated with consumer price index

(OECD)

• ROW interest rate: Money market rates, deflated with consumer price index (OECD)

– For most countries, money market rates (IMF). In a few cases where the data is not

available from the IMF for the whole sample period, we consider different sources as

below.

– China, Germany, UK: Immediate call money/interbank rate (OECD)

– Canada: Short term interest rate (OECD)
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– Japan: Overnight call rate (Bank of Japan)

– Figure F.2 shows that the interest rate data from different sources we use align very

well with the money market rate from the IMF.

• Quarterly National accounts (OECD)

– US dollars, volume estimates, fixed PPPs, seasonally adjusted

– Y: Gross domestic product - expenditure approach

– C: Private final consumption expenditure

– I: Gross fixed capital formation

– X: Exports of goods and services

– M: Imports goods and services

• Real exchange rate: Effective exchange rate, Real, Narrow indices, 2010=100 (BIS)

• Terms of trade: Terms of trade index (BEA, retrieved from FRED)

• US exporter characteristics (Alessandria and Choi 2021)

Table A.1: Empirical Moments with Different Weights

Mean trade Output Trade With China

𝜌 (Δ𝑐 − Δ𝑐∗, Δ𝑞) -0.10 -0.07 -0.12 -0.09

𝜌 (𝑖 − 𝑖∗) 0.87 0.86 0.86 0.86

𝜌(Δ𝑦, Δ𝑦∗) 0.40 0.26 0.30 0.32

𝜌(Δ𝑑, Δ𝑑 ∗) 0.34 0.24 0.24 0.11

𝜌(𝑛𝑡) 0.98 0.98 0.98 0.98

𝜎(Δ𝑖𝑛𝑣∗)/𝜎(Δ𝑦∗) 2.59 2.59 2.59 2.59

𝜌 (Δ𝑛𝑡, Δ𝑞) 0.30 0.30 0.30 0.30

𝜎(𝑛𝑡)/𝜎(𝑞) 1.16 1.16 1.16 1.16

𝜌(Δ𝑡𝑜𝑡, Δ𝑞) 0.49 0.49 0.49 0.49

𝜎(Δ𝑦) 0.007 0.007 0.007 0.007
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B Spectrum Analysis

In this section, we describe our spectrum analysis. For more detailed and rigorous steps, see

Hamilton (2020).

To study the RER represented at the spectrum domain, we convert its time-domain repre-

sentation using the Fourier transform. Given a covariance-stationary process 𝑞𝑡 , the spectrum is

defined as the Fourier transform of its autocovariance function 𝐶(𝜏):

𝑆(𝜔) = 1
2𝜋

∞
∑
𝜏=−∞

𝑒−𝑖𝜔𝜏 𝐶(𝜏) (9)

where

𝐶(𝜏) = 𝔼(𝑞𝑡 − 𝜇𝑞)(𝑞𝑡−𝜏 − 𝜇𝑞).

Note that 𝜔 is a (angular) frequency measure of radians per period.
61
Given that upper and lower

bounds for business cycle frequency are 8 and 32 quarters, the range of frequency that corre-

sponds to the business cycle is

𝜔 ∈ [
2𝜋

32 quarters ,
2𝜋

8 quarters] = [0.196, 0.785].

This is consistent with the range used by Rabanal and Rubio-Ramirez (2015).

Using the inverse of Equation (9), we can write the autocovariance function as

𝐶(𝜏) = ∫
𝜋

−𝜋
𝑒𝑖𝜔𝜏 𝑆(𝜔) 𝑑𝜔

Then with 𝜏 = 0, the variance 𝐶(0) = ∫ 𝜋
−𝜋 𝑆(𝜔)𝑑𝜔 is the sum of spectrum. In this sense, the

spectrum decomposes the variance into different frequencies.

Also, we can show that spectrum is symmetric around zero, periodic with a period of 2𝜋 , and
61
For an ordinary frequency 𝜉 = 𝜔/2𝜋 (Hz), the spectrum is defined as

𝑆(𝜉 ) = ∫
∞

−∞
𝐶(𝜏)𝑒−2𝜋𝑖𝜉 𝜏𝑑𝜏 .
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can be written as

𝑆(𝜔) = 1
2𝜋 𝐶(0) +

2
2𝜋

∞
∑
𝜏=1

𝑐𝑜𝑠(𝜔𝜏) 𝐶(𝜏 ). (10)

In order to estimate the population spectrum given the data sample of 𝑇 observations, we

could use the sample autocovariance

𝐶̂(𝑗) = 1
𝑇

𝑇
∑
𝑡=𝑗+1

(𝑞𝑡 − 𝑞̄)(𝑞𝑡−𝑗 − 𝑞̄),

where 𝑞̄ is a sample mean. This yields an estimate of Equation (10), known as the sample peri-

odogram:

𝑆𝑠𝑝(𝜔) = 1
2𝜋 𝐶̂(0) +

2
2𝜋

𝑇−1
∑
𝑗=1

𝑐𝑜𝑠(𝜔𝑗) 𝐶̂(𝑗). (11)

However, such estimate is subject to a few limitations. Thus we use a nonparametric estima-

tion instead. That is, we estimate the spectrum by

𝑆(𝜔𝑗) =
ℎ
∑
𝑚=−ℎ

𝑘(𝜔𝑗+𝑚, 𝜔𝑗) 𝑆𝑠𝑝(𝜔𝑗+𝑚) (12)

where 𝑘(𝜔𝑗+𝑚, 𝜔𝑗) is a kernel with a bandwidth ℎ. The idea is to take a weighted average of the

sample periodograms 𝑆𝑠𝑝(𝜔̃) for the values 𝜔̃ around 𝜔, where the distance between 𝜔 and 𝜔̃
determines the kernel, i.e. the weight.

After substituting Equation (11) into Equation (12) and some calculations, it can be shown that

Equation (12) is equivalent to

𝑆(𝜔) = 1
2𝜋 𝐶̂(0) +

2
2𝜋

𝑇−1
∑
𝑗=1

𝑘∗𝑗 𝑐𝑜𝑠(𝜔𝑗) 𝐶̂(𝑗).

where {𝑘∗𝑗 }𝑇−1𝑗=1 is a weighting sequence corresponding to a kernel function 𝑘(𝜔𝑗+𝑚, 𝜔𝑗). The weight
for the modified Bartlett kernel is given as

𝑘∗𝑗 =
⎧⎪⎪
⎨⎪⎪⎩

1 − 𝑗
𝐽 +1 for 𝑗 = 1, 2, ⋯ , 𝐽

0 for 𝑗 > 𝐽

where 𝐽 is the length of a window for the weight that is related to the kernel bandwidth. This
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yields the spectrum estimate of

𝑆(𝜔) = 1
2𝜋 𝐶̂(0) +

2
2𝜋

𝐽
∑
𝑗=1 [1 −

𝑗
𝐽 + 1] 𝑐𝑜𝑠(𝜔𝑗) 𝐶̂(𝑗).

On the other hand, there is no fixed rule for the choice of the bandwidth ℎ (or window 𝐽 ).
Hamilton (2020) suggests trying different values and “relying on subjective judgement for the

most plausible estimate." For the benchmark exercise we use the window of 𝐽 = 16, and check

that other values yield a similar result that is within the range of findings of the literature. Figure

B.1 shows the estimated spectrum of the RER for the full range in [0, 𝜋].

Figure B.1: Spectrum of the RER
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C Empirical Evidence of Trade Costs

In this section, we provide an external validation for our specification of trade costs. First, we use

data on bilateral trade to measure these costs for different pairs of countries. Next, we estimate

the elasticity of within-country trade costs and show it is consistent with the specification in our

benchmark model.

We measure trade costs from data as a wedge in the CES demand, common in any Armington
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trade model. The demand for country 𝑖 goods in country 𝑗 is given by:

𝑋 𝑖𝑗
𝑡 = (

𝑒𝜉 𝑖𝑗𝑡 𝑝𝑖𝑗𝑡
𝑃𝑗𝑡 )

−𝜌

𝐷𝑗𝑡

where 𝑋 𝑖𝑗
𝑡 is bilateral trade flows from country 𝑖 to 𝑗, 𝑝𝑖𝑗𝑡 is the price level of exports from country

𝑖 to 𝑗, 𝑃𝑗𝑡 is the price level of domestic absorption in country 𝑗, 𝐷𝑗𝑡 is the domestic absorption

of country 𝑗, and 𝜌 is the elasticity of substitution. Our model assumes the same type of CES

structure for the demand for differentiated goods. Moreover, it is the basic trade block for almost

all studies in trade literature.

Note that all of the terms in the demand function except for 𝜉 𝑖𝑗𝑡 are observables. Thus, we

can recover trade costs 𝜉 𝑖𝑗𝑡 as a gap between actual and predicted trade flows given prices and

aggregate demand. In particular, we estimate the above demand function using the following

regression

log 𝑋 𝑖𝑗
𝑡 = 𝛽 log(𝑃 𝑖𝑗𝑡 /𝑃𝑗𝑡) + log𝐷𝑗𝑡 + 𝜀 𝑖𝑗𝑡 . (13)

and consider the residuals 𝜀 𝑖𝑗𝑡 as trade costs. By estimating the demand function, we do not restrict

ourselves to a particular value of elasticity. In fact, there is a broad range of values used for the

elasticity in the literature, and the estimated elasticity varies greatly depending on the sample

and the length of period considered. Also, the estimation by construction minimizes the size of

trade costs and lets us take a conservative stance on the role of trade costs.

We estimate the demand function using data for the US and ten other countries for the ROW,

as is done in our benchmark quantification. For data on bilateral trade flows, we use annual data

from UN Comtrade, converted into real terms using the price levels of the US dollars from Penn

World Table 10.0. Domestic absorption and price levels of different countries in our sample also

come from Penn World Table 10.0. Our sample period covers the period of 1994-2019, mostly due

to data availability of trade flows.
62

For the trade cost between the US and the ROW, 𝜉 ∗𝑅𝑡 and 𝜉𝑈 𝑡 , we aggregate the data on the

ten countries and use it as the variables for the ROW. Then we run the regression (13) for the

62
We also check the robustness with quarterly data during the period of 2008Q1-2019Q4. We find that the path of

trade costs is similar to using annual data.
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Figure C.1: Empirical Relationship of Trade Costs

Notes: Each point represents trade costs of each year. The plots corresponds to the first and second

columns of Table C.1.

US-ROW pair. On the other hand, for the trade cost within the ROW, 𝜉𝑅𝑡 , we use bilateral data on
each pair of countries in the ROW, and take average of the recovered residuals across countries

to construct time series.

Given the path of trade costs, we check the relationship of 𝜉𝑅𝑡 with 𝜉 ∗𝑅𝑡 or 𝜉 ∗𝑅𝑡 − 𝜉𝑈 𝑡 . We use

these estimates to compare with the model analogue. As shown in Equation 14, in our model

we allow trade costs within the ROW aggregate, 𝜉𝑅𝑡 , to be nonzero. We further assume it to be

𝜉𝑅𝑡 = 𝜏 𝜉𝑡2 , where 𝜏 measures the elasticity of the within component respect to the ROW-US trade

cost. In the calibration of the benchmark model, displayed in Section 4.1, we find that 𝜏 is a small

positive number (0.16). Thus 𝜉𝑅𝑡 is positively correlated with trade costs from ROW to the US,

𝜉 ∗𝑅𝑡 = 𝜉𝑡
2 , and also with the difference between exporting and importing costs, 𝜉 ∗𝑅𝑡 − 𝜉𝑈 𝑡 = 𝜉𝑡 .

Figure C.1 shows that we do find a consistent pattern in the data. It plots the relationship of

𝜉𝑅 (left panel) with 𝜉 ∗𝑅 −𝜉𝑈 and 𝜉 ∗𝑅 (right panel). The estimated elasticity is between 0.199 and 0.32.

Finally, table C.1 displays the result with additional controls. Although the size of estimated

𝜏 differs slightly, we have the robust result that the estimated 𝜏 is positive as in our benchmark

model presented in Section 4.1. Moreover, the coefficient of 𝜉 ∗𝑅 is always larger than 𝜉 ∗𝑅 − 𝜉𝑈 , as
specified in our benchmark model.

55



Table C.1: Empirical Estimates of 𝜏

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: 𝜉 𝑅

(𝜉 ∗𝑅 − 𝜉𝑈 ) 0.199
∗∗

0.546
∗

0.493
∗∗∗

0.443

(0.0581) (0.223) (0.100) (0.304)

𝜉 ∗𝑅 0.328
∗∗∗

0.843
∗∗∗

0.583
∗∗∗

0.972
∗∗

(0.0798) (0.166) (0.0627) (0.293)

Country FE Y Y Y Y

Spending Constraints Y Y Y Y

Observations 25 25 25 25 25 25 25 25

R-squared 0.338 0.423 0.207 0.530 0.513 0.790 0.0847 0.324

Notes: Standard errors in parentheses. * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001. ‘Country FE’ denotes the fixed effect

for origin and destination countries when estimating the demand function for the pair of ROW countries. ‘Spending

Constraints’ are a restriction on the coefficient of domestic absorption to be 1, as predicted in the model with CES

demand.

D Spectrum of NT Flows

Figure D.1 shows the spectrum of the NT flows, normalized by its unconditional variance, in the

data and different specifications. As shown in Table 2 Panel C2, the spectrum in the benchmark

model (blue line with 𝑜) is very close to the data (black solid). Moreover, in the model without

dynamic trade (violet line with +), there is too much variation arising from lower frequencies,

which as we mention in Section 5.3 seems to contradict the intuition. To show that the intuition

we provide is correct, we plot the spectrum for the model without dynamic trade but keeping the

same adjustment cost of net foreign assets (𝜒 ) as in the benchmark model (red line with >).63 In
this case the low frequency variation in NT flows is lower (54 percent) than in the benchmark

model (62 percent). Hence, dynamic trade helps to distribute variation in NT flows from higher

to lower frequencies, exactly the opposite way as with the RER.
64

63
We do not re-calibrate.

64
The share of low frequency variation of the RER under this alternative model (no dynamics with same 𝜒 as

benchmark) is 0.73, hence higher than in the benchmark model (0.70).
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Figure D.1: Spectrum of NT Flows

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Data

Benchmark Model

No Trade Dynamics

No Trade Dynamics with =0.0137

Notes: The graph is enlarged for the frequency of [0, 1], as the spectrum on [1, 𝜋] is near zero.
Gray area shows the range of the frequencies for the business cycle. The blue line with circles

shows the result in the benchmark model, while the violet line with crosses shows the result

of the model recalibrated with no sunk cost of exporting. The red line with > shows the result
of the model recalibrated with no sunk cost of exporting, but setting the adjustment cost of

net foreign assets (𝜒 ) as in the benchmark model (i.e. 𝜒 = 0.0137).

E Robustness

In this section, we consider alternative specifications to check the robustness of the results of the

benchmark model. First, we explore an alternative estimation strategy to identify the parameters

and shocks driving the RER: Bayesian methods. We show that we obtain similar estimates of pa-

rameters than under our Benchmark model in Section 4.1. Next, we show that explore alternative

specifications to our benchmark model, in particular an estimation based on short sample simu-

lations, a reduced form specification of dynamic trade, a model with common trade costs, a model

with no within-ROW trade costs (i.e. 𝜏 = 0), a three-country model, and an alternative model

with investment adjustment costs. Overall, we find that our benchmark model better captures

the dynamic of key variables in our model relative to the alternative specifications. Moreover, we

find that the result that financial shocks matter more for the short run and trade shocks for the

long run is robust across the alternative specifications.
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Table E.1: Estimated Parameters

Dynamic Trade Static Trade

Prior Distribution Post Mean 90% Interval Post Mean 90% Interval

𝜌𝜓 Uniform [0.9,0.999] 0.94 ( 0.91 , 0.98 ) 0.96 ( 0.94 , 0.99 )

𝜌𝜉𝑑 Uniform [0.9,0.999] 0.99 ( 0.97 , 0.99 ) 0.98 ( 0.96 , 0.99 )

𝜎𝑐 Inverse gamma (0.01,0.01) 0.004 ( 0.004 , 0.005 ) 0.02 ( 0.02 , 0.02 )

𝜎𝑑 Inverse gamma (0.01,0.01) 0.006 ( 0.005 , 0.006 ) 0.008 ( 0.007 , 0.009 )

𝜎𝜓 Inverse gamma (0.01,0.01) 0.003 ( 0.003 , 0.004 ) 0.002 ( 0.002 , 0.002 )

𝜎𝜉𝑑 Inverse gamma (0.01,0.01) 0.04 ( 0.03 , 0.04 ) 0.09 ( 0.07 , 0.11 )

𝜏 Uniform [-0.5, 0.5] 0.14 ( 0.12 , 0.18 ) 0.10 ( 0.07 , 0.13 )

𝜒 Uniform [0.00001,0.5] 0.05 ( 0.01 , 0.10 ) 0.19 ( 0.08 , 0.31 )

𝜅 Uniform [0,20] 2.34 ( 0.01 , 5.06 ) 1.73 ( 0.55 , 3.28 )

𝜁 Uniform [0.85, 1.5] 1.17 (1.10 , 1.23) 1.40 ( 1.32 , 1.49 )

Log data density 1862.88 1592.32

E.1 Bayesian Estimation

We explore an alternative estimation strategy to identify the shocks driving the RER: Bayesian

methods. First, we show that we obtain similar estimated of parameters than under our bench-

mark model in Section 4.1. Second, we show that the model with dynamic trade is preferred to

that of static trade. Finally, we show that trade shocks are crucial for generating the dynamics

of the RER. That is, the counterfactual RER under trade shocks is closer to the RER in the data

than under the financial shock. We also present the estimated path of the different shocks and

compute the conditional variance decomposition of the RER.

Estimated Parameters

We estimate the same parameters as the ones we internally calibrate in the benchmark case.

In particular, we estimate the productivity shock volatility, 𝜎𝑐 and 𝜎𝑑 , financial shock parameters,

𝜌𝜙 and 𝜎𝜙 , trade shock parameters, 𝜌𝜉𝑑 , 𝜎𝜉𝑑 and 𝜏 , as well as the adjustment costs parameters

𝜒 and 𝜅. We impose loose priors, mostly uniform distribution and inverse gamma for volatility

parameters. For observables, we use four data series: GDP growth of the US and the ROW, the

NT flows and the RER, with the same sample period as in the benchmark case (1980Q1-2019Q4).
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The left panel of Table E.1 reports the prior and posterior distribution. The estimated results

are similar to the benchmark case. Both financial and trade shocks show relatively high volatility,

that of trade shocks being only slightly larger than financial shocks. The size of the financial shock

volatility is the smallest, while the size of trade shock is largest. The within-country trade cost

parameter 𝜏 = 0.14 is also very close to the benchmark case (0.17).

Dynamic vs Static Trade

To show that dynamic trade model better captures the data on trade and the RER compared

to the static mode, we estimate the static model with no fixed cost of exporting. We use the same

priors as the before. The result of the static case is presented in the right panel of Table E.1.

We find that the log data density (Laplace Approximation) in the dynamic trade model is

1862.88 while in the static model it is 1592.32, so that the dynamic trade model is preferred over

the static trade model by a Bayes factor of 𝑒𝑥𝑝(270.56).65 The value of 𝑒𝑥𝑝(270.56) provides a
strong evidence supporting the hypothesis that the dynamic trade model is statistically better

than the model with static trade. This is consistent with our results from Section 5.2 and Section

5.3, where we argue in favor of the dynamic trade model.

Figure E.1: Estimated Shocks
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Estimated Shocks

Figure E.1 shows the estimated path of productivity shocks of the ROW, trade shocks, and

financial shocks. The trade shocks were most volatile during the 1980s, when the series of differ-

ent trade policy were implemented in many countries. For example, Uruguay Round launched

multilateral trade negotiations. Also, countries like India and Mexico introduced trade reforms

65
The Bayes factor is similar to a likelihood-ratio test.
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Figure E.2: RER Dynamics under Different Shocks
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Notes: This figure shows the counterfactual path of RER with only one type of shocks. The productivity shocks

include both the differential and common component.

and lowered their trade barriers. In recent years trade shocks became more stable, while 2009

marks the period of the highest trade cost.

Counterfactual RER

In Figure E.3, we show the path of the RER in the data, as well as the counterfactual where

the RER is driven by only one of the shocks. We present the correlation between the data and

counterfactual cases in Table E.2. It is clear that the RER under trade shocks closely tracks the

actual RER during the whole sample period. The path generated only with the Trade shocks,

shown in green dashed line, very closely follow the data path. The correlation with the data is

0.83. On the other hand, with only financial shocks, the RER follows a similar path up to the early

2000s, but rather departs from data in the later periods. The correlation is 0.72 and lower than

the case with only trade shocks. Productivity shocks do not seem to generate a path for the RER

that closely related to the data. The correlation in this case is negative. Overall, we conclude that

trade shocks generate a dynamics of the RER that more closely track the actual data.

We turn to look at the spectrum of the counterfactual cases with muting each shock. The

result is presented in Figure E.3. The shape of the spectrum is disrupted the most when we shut
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Figure E.3: RER Spectrum Under Different Shocks
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Notes: This figure shows the counterfactual spectrum of RER with only one type of shocks.

The productivity shocks include both the differential and common components.

down the trade shocks. The share accounted by the low frequency reduces from 61 percent in

the Benchmark case to 58 percent without trade shocks. However, without financial shocks, it

increases to 63 percent.

Finally, in Table E.3 we provide the conditional variance decomposition obtained from the

Bayesian estimation of the dynamic trade model. In particular, we compute the share of the

ℎ−quarter ahead error forecast variance of the RER explained by each shock. It is clear that the

trade shock explains most of the forecast error variance of the RER in the long run (i.e. low fre-

quency), while the financial shock is important for the short run (i.e. high frequency) fluctuations.

E.2 Simulation with Short Samples

In this section, we take a different approach to estimate the parameters that are jointly pinned

down to match the targeted moments. Instead of taking moments from one long-sample simu-

lation, we simulate each sample for 400 periods, to be consistent with our quarterly data during

Table E.2: Correlation between Data and Counterfactuals

Only productivity Only trade Only financial

Corr(data, model) -0.20 0.83 0.72
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Table E.3: Conditional Variance Decomposition (%)

quarters = 1 8 32 80

Bayesian Estimation

Financial shock 68.26 47.22 25.27 19.57

Trade shock 28.04 45.76 63.74 69.72

Productivity shock 3.69 7.02 10.98 10.71

Benchmark Model

Financial shock 62.6 46.6 25.8 25.7

Trade shock 34.5 48.4 65.1 64.5

Productivity shock 2.9 5.0 9.1 9.8

1980Q1-2019Q4, and take the average of the last 160 observations from multiple runs. The results

are presented in Tables E.5 and E.6 under ‘Short.’

The estimated parameters, and thus the values of targeted moments, are very similar to those

of the Benchmark. However, notice that the moments of persistence tend to be slightly smaller

than those from longer samples. To analyze the effect of using different sample periods further,

we consider keeping the same parameters as in the Benchmark case and use different periods to

compare the calculated moments.

The result of these exercises is presented in Table E.4. First, we consider the effect of the

distance from the initial point (or steady state). To see this, we use samples of same length starting

at different periods, which are presented in the first three columns of Table E.4. We find that given

the same sample lengths, distance from the initial point seems to have no impact on the estimates.

Second, we consider using samples of increasing lengths. We find that volatility moments are

similar across sample length, but autocorrelations are increasing in sample lengths, especially for

lengths<900. This is a case not only for the endogenous variables, like the RER, but also for the

shock process such as 𝜓ℎ, 𝜉𝑑 . This is because least square estimates of AR(n)models are downward

biased (Marriott and Pope, 1954; Kendall, 1954). The bias is decreasing in the sample length, and

the estimate is consistent. However even with very small sizes the difference is negligible leading

to a very similar result as using longer samples as in our Benchmark case. Finally, Table E.7 shows
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the results in terms of the conditional variance decomposition. We find that trade shocks aremore

important under the short sample identification.

Table E.4: Moments with Different Sample Lengths

Length 100 100 100 300 900 2900 6900

Start period 501 1801 7801 7701 7401 6401 3401

End period 600 1900 7900 8000 8300 9300 10300

𝜎(Δ𝑦) 0.682 0.681 0.684 0.685 0.685 0.685 0.685

(0.0032) (0.0034) (0.0033) (0.002) (0.0012) (0.0007) (0.0004)

𝜌(Δ𝑦, Δ𝑦∗) 0.379 0.375 0.385 0.383 0.385 0.386 0.385

(0.0059) (0.006) (0.0063) (0.0034) (0.002) (0.0011) (0.0007)

𝜎(Δ𝑖𝑛𝑣∗)/𝜎(Δ𝑦∗) 2.523 2.515 2.533 2.526 2.520 2.517 2.517

(0.0105) (0.0096) (0.0097) (0.0061) (0.0034) (0.0018) (0.0012)

𝜌(𝑛𝑡) 0.922 0.922 0.919 0.938 0.941 0.942 0.942

(0.0023) (0.0028) (0.0028) (0.0011) (0.0006) (0.0003) (0.0002)

𝜌 (𝑖 − 𝑖∗) 0.776 0.773 0.767 0.825 0.847 0.853 0.855

(0.0058) (0.0059) (0.0064) (0.0034) (0.0019) (0.0009) (0.0006)

𝜌 (Δ𝑐 − Δ𝑐∗, Δ𝑞) -0.080 -0.098 -0.089 -0.088 -0.084 -0.084 -0.087

(0.0066) (0.0076) (0.006604) (0.00414) (0.002389) (0.0013) (0.000834)

𝜌 (Δ𝑛𝑡, Δ𝑞) 0.298 0.298 0.292 0.289 0.290 0.291 0.292

(0.0064) (0.0067) (0.0066) (0.004) (0.0024) (0.0012) (0.0008)

𝜎(𝑛𝑡)/𝜎(𝑞) 1.491 1.508 1.436 1.260 1.163 1.137 1.130

(0.0346) (0.033) (0.0334) (0.0182) (0.01) (0.0059) (0.004)

𝜌(Δ𝑑, Δ𝑑 ∗) 0.352 0.353 0.355 0.355 0.356 0.357 0.357

(0.0065) (0.0062) (0.0061) (0.0034) (0.0022) (0.0011) (0.0007)

𝜌(Δ𝑡𝑜𝑡, Δ𝑞) 0.500 0.510 0.500 0.500 0.490 0.490 0.500

(0.01) (0.01) (0.01) (0) (0) (0) (0)

𝜎(Δ𝑞) 5.836 5.887 5.827 5.773 5.774 5.759 5.753

(0.0452) (0.0407) (0.0415) (0.0221) (0.0134) (0.0077) (0.0051)

𝜌(𝑞) 0.910 0.906 0.912 0.945 0.955 0.958 0.959

(0.0032) (0.0036) (0.0035) (0.0014) (0.0008) (0.0004) (0.0003)

𝜌(𝜓ℎ) 0.912 0.912 0.913 0.946 0.954 0.956 0.956

(0.0034) (0.0035) (0.0033) (0.001) (0.0007) (0.004) (0.0002)

𝜌(𝜉𝑑 ) 0.912 0.912 0.913 0.946 0.954 0.956 0.956

(0.0034) (0.0035) (0.0033) (0.001) (0.0007) (0.004) (0.0002)

E.3 Dynamic Trade Specification

In this section, we consider the final good aggregator with adjustment costs in the use of imported

inputs, as in Erceg et al. (2006), Rabanal and Rubio-Ramirez (2015) and Gornemann et al. (2020).
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The CES aggregator of the retail sector in each country is now given by

𝐷𝑡 = [𝑌
𝜌−1
𝜌

𝑅𝑡 + 𝛾 1
𝜌 (𝜑𝑡𝑌𝑈 𝑡)

𝜌−1
𝜌
]

𝜌
𝜌−1

𝐷∗
𝑡 = [𝑌

∗ 𝜌−1𝜌
𝑈 𝑡 + 𝛾 1

𝜌 (𝜑∗
𝑡𝑌 ∗

𝑅𝑡)
𝜌−1
𝜌
]

𝜌
𝜌−1

where 𝜑𝑡 and 𝜑∗
𝑡 is the weight on the use of imported inputs in the production of the final good.

Their functional forms are given by

𝜑𝑡 = [1 −
𝜄
2 (

𝑌𝑈 𝑡/𝑌𝑅𝑡
𝑌𝑈 𝑡−1/𝑌𝑅𝑡−1

− 1)
2

] 𝜑∗
𝑡 = [1 −

𝜄
2 (

𝑌 ∗
𝑅𝑡/𝑌 ∗

𝑈 𝑡
𝑌 ∗
𝑅𝑡−1/𝑌 ∗

𝑈 𝑡−1
− 1)

2

] .

where parameter 𝜄 determines the size of the adjustment cost in the use of imported inputs.

We identify the adjustment cost 𝜄 using the speed of adjustment of NT to prices, i.e. the

estimated parameter 𝛼 in the ECM equation 7, which has a value of 0.07 in data. That is, on top

of the other targeted moments, we add the speed-of-adjustment parameter to jointly estimate the

parameters, including the new parameter 𝜄 (11 parameters and 11 moments). Since we compare

this model with our benchmark, we shut down trade dynamics that arises from the fixed costs of

exporting , i.e. we set the fixed costs and idiosyncratic productivity to zero.

The parameters and their calibrated values are presented in Table E.5 under ‘Input Adj.’ The

calibrated value of the input adjustment cost parameter 𝜄 is 18.9. This implies that when the share

of home to foreign inputs,
𝑌𝑈 𝑡 /𝑌𝑅𝑡

𝑌𝑈 𝑡−1/𝑌𝑅𝑡−1 , deviates 1 percent from the steady state, then, given 𝜄 = 18.9
and 𝛾 = 0.097, the home-country output will be 0.001 percent smaller than without the presence

of this cost.

In Table E.6, we label the column for the result of this alternative dynamic specification as

‘Input Adj.’ The model is able to capture the speed of adjustment of NT to prices (𝛼 = 0.07) that
is a target in this case. We find that this alternative model is able to generate a differential short

and long run trade elasticity to prices. However, it does not generate a differential elasticity as

close to the data as in the benchmark model.

Furthermore, we plot in Figure E.4 the spectrum of the RER in the data (solid black line), the

benchmark model (dashed blue line) and the alternative input adjustment model (green line with

x). The alternative dynamic trade model does not capture the size of the spectrum as well as the

benchmarkmodel. Moreover, in Panel C1 of Table E.6 we show that the low frequency share in the
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Table E.5: Robustness – Calibrated Parameters

Parameters Benchmark Short Input Adj Common 𝜏 = 0 Inv Adj TE Sophisticated 𝜓
Financial shock, volatility 𝜎𝜓 0.002 0.002 7.94E-04 0.007 0.002 0.004 0.002 0

‡

Financial shock, persistence 𝜌𝜓 0.96 0.97 0.99 0.95 0.93 0.87 0.98 0
‡

Trade shock, volatility 𝜎𝜉 0.05 0.07 0.05 0.03 0.05 0.07 0.08 0
‡

Trade shock, persistence 𝜌𝜉 0.97 0.99 0.99 0.99 0.97 0.98 0.97 0
‡

Trade shock, within-country share 𝜏 0.17 0.16 0.02 0.40 0.00‡ 0.17 0.15 0
‡

Common productivity, volatility 𝜎𝑎𝑐 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Differential productivity, volatility 𝜎𝑎𝑑 0.005 0.006 0.004 0.005 0.007 0.005 0.004 0.006

Adjustment cost of portfolios 𝜒 0.0137 0.021 0.01 0.01 0.002 8𝑒−04 0.01 0.007

Adjustment cost of capital 𝜅 2.42 3.22 9.35 2.32 10.27 1.60∗ 2.86 4.95

Pricing to market parameter 𝜁 0.97 0.95 1.4 1.01 0.81 0.98 0.99 0.97

Import adjustment cost 𝜄 0
‡

0
‡

18.9 0
‡

0
‡

0
‡

0
‡

0
‡

Fixed cost of new exporters 𝑓 0 0.14 0.14 0
‡

0.14 0.14 0.14 0.39 0.14

Fixed cost of incumbent exporters 𝑓 1 0.04 0.04 0
‡

0.04 0.04 0.04 0.08 0.04

Volatility of idiosyncratic productivity 𝜎𝜇 0.15 0.15 0
‡

0.15 0.15 0.15 0.15 0.15

Common Trade shock, volatility 𝜎𝜉 𝑐 0
‡

0
‡

0
‡

0.01 0
‡

0
‡

0
‡

0
‡

Common Trade shock, persistence 𝜌𝜉 𝑐 0
‡

0
‡

0
‡

0.99 0
‡

0
‡

0
‡

0
‡

Elasticity of Substitution 𝜌 1.5
‡

1.5
‡

1.5
‡

1.5
‡

1.5
‡

1.5
‡

1.7 1.5
‡

High Persistence Fin shock, volatility 𝜎ℎ𝜓 0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0.001

High Persistence Fin shock, persistence 𝜌ℎ𝜓 0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0.94

Low Persistence Fin shock, volatility 𝜎 𝑙𝜓 0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0.002

Low Persistence Fin shock, persistence 𝜌𝑙𝜓 0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0.30

Correlation innovations 𝜖ℎ𝜓 and 𝜖 𝑙𝜓 𝜌𝑙𝜓 0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0
‡

0.03

Notes: Superscript ‡ denotes that the parameter is exogeneously set while superscript ∗ specifies that the calibrated
adjustment cost is for investment not capital. ‘Benchmark’ shows the same results presented in Section 5. ‘Short’

shows the result of the estimation using short period samples (Section E.2). ‘Input Adj’ shows the result of the

model with reduced-form trade dynamics (Section E.3). ‘Common’ is for the model with common shocks to trade

costs (Section E.4). ‘𝜏 = 0’ is the case with no within-ROW trade cost shocks (Section E.5). ‘Inv Adj’ is the case

with investment adjustment cost (Section E.7). ‘TE’ is when we target short- and long-run elasiticies (Section E.8).

’Sophisticated 𝜓 ’ is the case of a mix of two AR(1) processes for the financial shock (Section E.9).

spectrum of the RER is higher in the alternative dynamic trade model (0.76 percent). Hence, the

benchmark model, where we exploit information from the microdata on firm dynamics, captures

the shape of the spectrum of the RER better than the alternative dynamic trade model.

Finally, Table E.7 present the variance decomposition of this alternative model, under ‘Input

Adj.’ We find a stronger role of financial shocks as drivers of the RER in the short run, relative

to our benchmark model. The contribution of financial shocks to the one-quarter ahead error

forecast variance of the RER is around 89 percent in the alternative model, as opposed to 63
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percent in our benchmark. However, in the long run we find similar results as in our benchmark

model for the contribution of financial and trade shocks in explaining the variation of the RER.

We find that trade shocks explains around 60 percent of the 80-quarters ahead error forecast

variance in this alternative model, close to the 63 percent in the benchmark model. On the other

hand, financial shocks explain around 37 percent in the alternative model, higher than the 26

percent found in our benchmark model. Hence, our main result holds: trade shocks are crucial

to explain the low frequency variation in the RER, thus being crucial for capturing its overall

variation.

Figure E.4: RER Spectrum Robustness
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However, our finding about the importance of trade costs in the long run still holds. In Table

E.7, the columns labeled ‘Input Adj,’ we show the variance decomposition of each shock. As in

the benchmark case, the financial shocks play a dominant role in the earlier periods, accounting

up to 85 percent in the first quarter. However, the share reduces to 31 percent in the 80th quater,

and trade shocks account for the largest share of 63 percent.
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E.4 Common Trade Costs

We extend the trade shock process to include a common trade cost. Specifically, trade cost shocks

are given by

𝜉 ∗𝑅𝑡 =
𝜉𝑡
2 + 𝜉 𝑐𝑡 𝜉𝑈 𝑡 = −𝜉𝑡2 + 𝜉 𝑐𝑡

𝜉𝑅𝑡 = 𝜏
𝜉𝑡
2 𝜉 ∗𝑈 𝑡 = 0 (14)

where 𝜏 ∈ ℝ,
𝜉𝑡 = 𝜌𝜉 𝜉𝑡−1 + 𝜀𝜉 𝑡 , 𝜀𝜉 𝑡 ∼ 𝑁 (0, 𝜎𝜉 )

and

𝜉𝑐,𝑡 = 𝜌𝜉𝑐𝜉𝑐,𝑡−1 + 𝜀𝜉 𝑐𝑡 , 𝜀𝜉 𝑐𝑡 ∼ 𝑁 (0, 𝜎𝜉𝑐 ).

This means we need to discipline two extra parameters: the persistence 𝜌𝜉𝑐 and volatility 𝜎𝜉𝑐
of the common trade cost shock. We target the autocorrelation of the share of trade over GDP,

(𝑥 + 𝑚)/𝑦, and the correlation between the growth rates of the trade share and GDP to identify

these parameters, since the common trade process has a direct effect on the scale of trade.

Table E.5 present the calibrated parameters. The parameters in common with the benchmark

model are similar, although we find a higher persistence of the differential trade shock and a

higher domestic trade cost elasticity. We find that the persistence of the common trade shock

process is quite high, around 0.99, consistent with the fact that the trade share has been increasing

since the early 1970s.

The moment matching of the common trade cost model is presented in Table E.6. In general,

we find that the model performs similarly as the benchmark model. However, we find a higher

volatility of macro aggregates relative to the RER and a slightly higher share of low frequency

variation in the RER. Finally, Table E.7 show the results in terms of the conditional variance de-

composition of the RER. Consistent with the fact that the estimated persistence of the differential

trade shock is higher, we find a stronger effect of the differential trade shock on the RER than in

the benchmark model.
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E.5 Within-ROW Trade Costs

In this section, we evaluate the role of the within-ROW trade cost 𝜏 . We set up an alternative

model where the elasticity of domestic trade costs to international costs is 𝜏 = 0. Then, we

calibrate the model by targeting the same moments as in the benchmark model, except the cross

country correlation of domestic absorption.

The calibrated parameters and resulting moments are reported in Tables E.5 and E.6 under

‘𝜏 = 0.’ This model generates a worse fit for the Backus-Smith-Kollmann correlation, which is

0.27 in the model as opposed to -0.10 in the data, although it lies within the estimated range in

the literature. The model misses the cross country correlation of domestic absorption, being 0.06

in the model and 0.34 in the data. Thus, 𝜏 matters for accounting for the Backus-Smith-Kollmann

puzzle and the cross country correlation of domestic absorption. Overall, this model has a worse

fit into matching the target moments relative to our benchmark model.

In terms of the untargeted moments, we notice that the model delivers a differential short and

long run elasticity of trade to prices, but but both higher than in the data. Hence, our benchmark

model better captures the differential short and long run elasticity of NT to prices. The spectrum

decomposition of the RER in this model is also worse that in the benchmark model.

In Table E.7 we present the results related to the variance decomposition of the RER, under

‘𝜏 = 0.’ Our main results holds under this specification: financial shocks explain a higher portion

of the variation in the RER in the short run, while trade shocks explains most of the variation in

the long run. We find a similar role of financial shocks in the short run to the benchmark model,

since the contribution of this shocks to the 1-period ahead error forecast variance of the RER is

61 percent in this specification, compared to 63 percent in the benchmark model. Furthermore,

financial shocks explain 20 percent of the 80-quarters ahead error forecast variance in the RER,

close to the 26 percent in our benchmark model. Finally, trade shocks explains 68 percent of the

80-quarters ahead error forecast variance in the RER, close to the 65 percent in our benchmark

model.
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E.6 Three Country Model

We extend the static trade model to include and extra country. One of the countries is the US,

which has measure 0.5, whereas each of the two extra countries are ROW countries with size

0.5. The aggregate of the ROW is an average of the two ROW countries, and we use the same

moments as in the two country model. Trade cost shocks are given by

𝜉𝑅1,𝑈 = 𝜉𝑑/2 𝜉𝑅2,𝑈 = 𝜉𝑑/2

𝜉𝑈 ,𝑅1 = −𝜉𝑑/2 𝜉𝑈 ,𝑅2 = −𝜉𝑑/2

𝜉𝑅1,𝑅2 = 𝜏 ⋅ 𝜉𝑑/2 𝜉𝑅2,𝑅1 = 𝜏 ⋅ 𝜉𝑑/2

where R1 and R2 denote two countries consisting the ROW, US denotes the US, and 𝜉𝑑 follows an
AR(1) processes as in the benchmark model. To calibrate the model we set the value of 𝜏 to the

benchmark case (0.174), and discipline the remaining parameters using the same moments as the

benchmark case. Table E.8 show the matching of the moments.
66

Figure E.5, shows the Impulse Response Functions of selected variables to a differential trade

cost shock, for different values of 𝜏 . As it is the case with the domestic trade cost elasticity in

the two country model (Figure 5), a higher elasticity dampens the effect on relative domestic

absorption and the RER.

E.7 Investment Adjustment Costs

In this section, we consider an adjustment cost in investment as in Christiano et al. (2005). That

is, the law of motion for capital is now given by

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + [1 − 𝑆 (
𝐼𝑡
𝐼𝑡−1)]

𝐼𝑡

66
We find that matching the aggregate US and ROWmoments in the three country model is harder than in the two

country case. However, the model does a reasonable job in matching them. Moreover, the purpose of this exercise

is to show that the elasticity of domestic to foreign trade cost in the two country model operates as a trade cost

between ROW countries, which we show it does qualitatively.
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Figure E.5: IRFs to Trade Shock in Three-Country Model
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where 𝑆(1) = 𝑆′(1) = 0 and 𝑆′′(1) > 0. Here, we consider the functional form of 𝑆 as

𝑆 (
𝐼𝑡
𝐼𝑡−1)

= 𝜅̃
2 (

𝐼𝑡
𝐼𝑡−1

− 1)
2
.

To estimate the adjustment cost parameter 𝜅̃, we again use the volatility of investment. That

is, the targeted moments remain unchanged. The result of the estimated model with the new

investment adjustment cost is presented in Tables E.5 and E.6, under ‘Inv Adj.’

The estimated parameter for the adjustment cost is smaller than in the benchmark model,

since now the adjustment cost is over a flow rather than a stock. This version of themodel requires

higher standard deviations of financial and trade shocks relative to our benchmark, where the

variance of the common and differential productivity shocks are almost the same. We find that

the adjustment cost of debt is smaller under investment adjustment costs. Finally, we find the a

very similar pricing to market coefficient as in the benchmark, with an implied pass-through of

exchange rate to prices of 67 percent.

The model is able to match the target moments, as well as the untargeted moments. The short

and long run elasticity of NT to prices is also very similar to the benchmark model. Moreover,

the investment adjustment cost model generates a higher share of the variance of the RER for the

low frequency than in the benchmark model, hence the later captures better this aspect of the

variation in the RER.
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Finally, in Table E.7 we present the contribution of each shock to the error forecast variance

of the RER. Consistent with our benchmark model, we find that financial shocks explains most of

the variation in the short run, while trade shocks explain most of it in the long run. In particular,

financial shocks explains 67 percent of the one-quarter ahead error forecast variance, very close to

the 63 percent in our benchmarkmodel. On the other hand, trade shocks explains 82 percent of the

80-quarters ahead error forecast variance of the RER in thismodel, more than the 65 percent found

in the benchmark model. Overall, our main results are robust to this alternative specification of

investment adjustment cost.

E.8 Sunk Exporting Cost and Trade Elasticity

In this section, we improve the performance of the model in generating short- and long-run

trade elasticities. To do so, we allow the Armington elasticity and the exporter fixed costs to be

estimated jointly along with other internally-calibrated parameters.

The Armington elasticity is a crucial parameter that determines the relationship between rel-

ative prices and NT flows. Yet the estimates for the elasticity tend to vary, and a large range of

values are used in the trade literature. In our benchmark model, we set the Armington elasticity

exogenously with 𝜌 = 1.5 as in Itskhoki and Mukhin (2021a). However, the long-run trade elas-

ticity is slightly lower in our benchmark model than in the data (0.97 in the benchmark model

and 1.16 in data, see Table 2), suggesting the need for a larger Armington elasticity. Moreover,

since the behavior of individual firms affects aggregate trade flows, re-calibrating the fixed costs

of exporting would allow the model to generate a short and long run trade elasticity closer to

data.

To estimate these three additional parameters, we add to our targeted moments three ECM

estimates, namely, short- and long-run trade elasticities and the speed of adjustment. The result

of this exercise is presented in Tables E.5 and E.6, under the column ‘TE.’ Consistent with our

conjecture, the estimated Armington elasticity 𝜌 = 1.7 is slightly larger than the benchmark case.

With the estimated fixed costs 𝑓 0 = 0.39, 𝑓 1 = 0.08, we get larger sunk costs, contributing to

generating a larger gap between short- and long-run elasticities so that they are closer to data.

The volatility and persistence of trade shocks are estimated to be larger relative to the bench-

mark model. This arises from firms being subject to larger frictions in their exports. It is also
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the case that the persistence of financial shocks is higher. Overall, we find similar results as in

the benchmark model. However, the persistence of NT and, as a consequence, the low frequency

share of variation are higher than in the benchmark model which arises from estimating a higher

persistence of trade and financial shocks and higher sunk costs. Finally, as shown in Table E.7,

financial shocks explain a higher portion of the variation of the RER at all horizons relative to the

benchmark model (due to the higher persistence of its process), although trade shocks are still

dominant in the long run.

E.9 A More Sophisticated Financial Process

We show that our result that trade shocks are needed to match the RER and NT moments at the

high frequency is robust to considering a more sophisticated financial process. In particular, we

allow the financial shock to be the mix of two AR(1) processes, each of them with a different

persistence. Assume that there are twp financial processes given by,

𝜓 ℎ
𝑡 = 𝜌ℎ𝜓𝜓 ℎ

𝑡−1 + 𝜖ℎ𝜓𝑡 and 𝜓 𝑙
𝑡 = 𝜌𝑙𝜓𝜓 𝑙

𝑡−1 + 𝜖 𝑙𝜓 𝑡

where 𝜌ℎ𝜓 ≥ 𝜌𝑙𝜓 are the persistence’s of the processes, 𝜖ℎ𝜓𝑡 ∼ 𝑁 (0, 𝜎ℎ𝜓 ) and 𝜖 𝑙𝜓 𝑡 ∼ 𝑁 (0, 𝜎 𝑙𝜓 ). We

also allow the innovations 𝜖ℎ𝜓𝑡 and 𝜖 𝑙𝜓 𝑡 to be correlated. We target the same moments as in the

benchmark model (we have the same number of moments than parameters since we include the

correlation between the two financial innovations). When we estimate the model we impose the

following constraints: 0.5 ≤ 𝜌ℎ𝜓 < 1 and 0 ≤ 𝜌𝑙𝜓 ≤ 0.567

The estimated parameters are displayed in Table E.5 and the moments in Table E.6, under

’Sophisticated 𝜓 ’. This model fails to capture the RER and NT moments at the high frequency

because both processes trigger a positive comovement between the RER and NT on impact, as

shown in Figure E.6. As a consequence, the model cannot match the weak high frequency cor-

relation. Moreover, conditional on matching the other target moments, the model generates an

excess volatility of NT at the high frequency. Finally, the model fails to generate a short and

long-run trade elasticity close to the data. Hence, the main results of the paper hold under this

more sophisticated financial process.

67
Increasing the upper bound of 𝑟ℎ𝑜𝑙𝜓 in the estimation did not change the results.
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Figure E.6: Impulse Response Functions: Two AR(1) Financial Processes
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F Theoretical Decomposition of NT

In this section, we provide the derivation of NT in our benchmark model. For simplicity, we omit

the time subscript 𝑡 .
The demand function for aggregate exports of ROW is given by

𝑌 ∗
𝑅 = 𝛾 (

𝑃 ∗
𝑅
𝑃 ∗)

−𝜌
𝐷∗

where 𝑃 ∗ = 1. The demand faced by a producer of each variety 𝑗 is

𝑦∗
𝑅𝑗 = (

𝑝∗𝑅𝑗
𝑃 ∗
𝑅 )

−𝜃
𝑌 ∗
𝑅 = 𝛾 (

𝑝∗𝑅𝑗
𝑃 ∗
𝑅 )

−𝜃

(
𝑃 ∗
𝑅
𝑃 )

−𝜌
𝐷∗

where the second equality uses the aggregate demand function. Using that total sales is a sum of

sales of all varieties,

𝑃 ∗
𝑅 𝑌 ∗

𝑅 = ∫ 𝑝∗𝑅𝑗 𝑦∗
𝑅𝑗𝑑𝑗 = ∫ 𝛾𝑝∗𝑅1−𝜃𝑗 𝑃 ∗

𝑅
𝜃−𝜌𝐷∗ 𝑑𝑗

= 𝛾 𝑃 ∗
𝑅
1−𝜌 𝐷∗.
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Aggregate exports and imports in nominal terms are given by

𝑋𝑁 =  ∫
𝑗∈

𝑝∗𝑅𝑗 𝑦∗
𝑅𝑗𝑑𝑗 = 𝑃 ∗

𝑅𝑌 ∗
𝑅 = 𝛾  𝑃 ∗

𝑅
(1−𝜌)𝐷∗

𝑀𝑁 = ∫
𝑗∈∗

𝑝𝑈 𝑗 𝑦𝑈 𝑗𝑑𝑗 = 𝛾 𝑃 (1−𝜌)
𝑈 𝐷

and the export and import prices are

𝑃𝑥 = (
1
𝑁 ∫

𝑗∈ (
𝑝∗𝑅𝑗
𝑒𝜉 ∗𝑅 )

1−𝜃 ∗

𝑑𝑗)

1
1−𝜃∗

=  𝑃 ∗
𝑅 𝑒𝜉

∗
𝑅(𝜃 ∗−1) 𝑁 −1

1−𝜃∗

𝑃𝑚 = (
1
𝑁 ∗ ∫𝑗∈∗ (

𝑝𝑈 𝑗
𝑒𝜉𝑈 )

1−𝜃
𝑑𝑗)

1
1−𝜃

= 𝑃𝑈 𝑒𝜉𝑈 (𝜃−1) 𝑁 ∗ −1
1−𝜃

where 𝑁 denotes the mass of exporters. In logs,

𝑥𝑁 = log 𝛾 + (1 − 𝜌)𝑝∗𝑅 + 𝑑 ∗ + 𝑞

𝑚𝑁 = log 𝛾 + (1 − 𝜌)𝑝 + 𝑑

𝑝𝑥 = 𝑞 + 𝑝∗𝑅 +
1

1 − 𝜃 ∗𝑛 − (1 − 𝜃 ∗)𝜉 ∗𝑅

𝑝𝑚 = 𝑝𝑈 + 1
1 − 𝜃 𝑛

∗ − (1 − 𝜃)𝜉𝑈

where lower case letters denote variables in logs.

Using that in real terms real exports and real imports are 𝑋 = 𝑋𝑁 /𝑃𝑥,𝑀 = 𝑀𝑁 /𝑃𝑚, respec-

tively, log of real exports and imports are given by

𝑥 = 𝑥𝑁 − 𝑝𝑥 = log 𝛾 − 𝜌𝑝∗𝑅 + 𝑑 ∗ − 1
1 − 𝜃 ∗𝑛

𝑚 = 𝑚𝑁 − 𝑝𝑚 = log 𝛾−𝜌𝑝𝑈 + 𝑑 − 1
1 − 𝜃 𝑛

∗.
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Therefore, NT, measured by log of Export-Import ratio, is

𝑛𝑡 = 𝑥 − 𝑚

= 𝜌(𝑝𝑈 − 𝑝∗𝑅) + (𝑑 ∗ − 𝑑) + (
1

1 − 𝜃 𝑛
∗ − 1

1 − 𝜃 ∗𝑛)
= 𝜌 (𝑡𝑜𝑡 + 𝑞) + (𝑑 ∗ − 𝑑) + ((1 − 𝜃 ∗)𝜉 ∗𝑅 − (1 − 𝜃)𝜉𝑈 ) + (1 − 𝜌) (

1
1 − 𝜃 𝑛

∗ − 1
1 − 𝜃 ∗𝑛) . (15)

where 𝑡𝑜𝑡𝑡 = 𝑝𝑚 − 𝑝𝑥 is the terms of trade.

On the other hand, in the Armington trade model, demand for exports and foreign goods

follows a standard CES structure. Taking the ratio of demand functions for exports and imports

implied in the Armington model, we have

𝑛𝑡𝑡 = 𝜌 (𝑡𝑜𝑡𝑡 + 𝑞𝑡) + (𝑑 ∗
𝑡 − 𝑑𝑡). (16)

Comparing this equation, Equation 15 for the benchmark model has additional terms ((1 − 𝜃 ∗)𝜉 ∗𝑅 −
(1 − 𝜃)𝜉𝑈 ) and (1 − 𝜌) ( 1

1−𝜃𝑛∗ − 1
1−𝜃 ∗𝑛) . These reflect that in our model we have two features, trade

shocks and trade dynamics.

G Analytical Solution and Impacts of Shocks on the RER Persistence

In this section, we derive the analytical solution for the RER to study the impact of financial and

trade shocks on the RER persistence.

We start with the log-linearized resource constraint with trade shock 𝜉𝑡 :

𝑦𝑡 = (1 − 𝛾)𝑦𝐻𝑡 + 𝛾(𝑦∗
𝐻 𝑡 + 𝜉𝑡)

where the small case denotes log-linearized variables. Using log-linearized 𝑁𝑋𝑡 and substituting
the solution for prices and quantities, we get

𝑛𝑥𝑡 = 𝛾(𝑦𝐻𝑡 − 𝑦𝐹 𝑡 − 𝑠𝑡) = 𝛾 (𝜆𝑞𝑞𝑡 − 𝜆𝜉 𝜉𝑡)

for some coefficients 𝜆𝑞, 𝜆𝜉 and 𝜉𝑡 = 𝜉𝑡−𝜉 ∗𝑡 . Notice that we have an additional shock in the resource
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constraint while the equations for other quantities and prices are same as in Itskhoki and Mukhin

(2021a). Also, we are setting productivity shocks 𝑎𝑐𝑡 = 𝑎𝑑𝑡 = 0 to focus on two other shocks.

Following similar steps as described in Itskhoki and Mukhin (2021a), we end up in a system

of two equations, which can be expressed in a matrix form as

𝐸𝑡
⎛
⎜
⎜
⎝

1 −𝜒̂2
0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑞𝑡+1
𝑏̂∗𝑡+1

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝

1 0
1 1

𝛽

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑞𝑡
𝑏̂∗𝑡

⎞
⎟
⎟
⎠
−
⎛
⎜
⎜
⎝

−𝜒̂1 𝑘(1 − 𝜌)
0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝜓𝑡
𝜉𝑡

⎞
⎟
⎟
⎠

where 𝑘 is a coefficient substituted for simplicity, and 𝜉𝑡 is a normalization of 𝜉𝑡 . We use Blanchard-

Khanmethods to derive the closed-form solution for the RER. That is, we diagonalize the dynamic

system of

𝐸𝑡𝑧𝑡+1 = 𝐵𝑧𝑡 − 𝐶(𝜓𝑡 𝜉𝑡)′

where 𝑧𝑡 =
⎛
⎜
⎜
⎝

𝑞𝑡
𝑏∗𝑡

⎞
⎟
⎟
⎠
, 𝐵 =

⎛
⎜
⎜
⎝

1 + 𝜒̂2 𝜒̂2
𝛽

1 1
𝛽

⎞
⎟
⎟
⎠
, and 𝐶 is a coefficient matrix to the vector of shocks.

Eigenvalues 𝜇1, 𝜇2 of the matrix 𝐵 are solutions to

(1 + 𝜒̂2 − 𝜇)(
1
𝛽 − 𝜇) − 𝜒̂2

𝛽 = 0.

The left eigenvector for an eigenvalue 𝜇2 > 1 is 𝑣 = (1, 1/𝛽 − 𝜇1). We pre-multiply the dynamic

system by 𝑣 and get the equilibrium cointegration relationship:

𝑣𝑧𝑡 = 𝑞𝑡 + (
1
𝛽 − 𝜇1)𝑏𝑡

= 𝛽𝜇1𝜒̂1
1 − 𝛽𝜌𝜇1

𝜓𝑡 + (
1 − 𝛽𝜇1 + 𝛽(1 − 𝜌)𝑘𝜇1

1 − 𝛽𝜌𝜇1 )𝜉𝑡 . (17)

Combining this with the second dynamic equation for 𝑏̂∗𝑡+1, we get

𝑏̂∗𝑡+1 − 𝜇1𝑏̂∗𝑡 = 𝑞𝑡 + (
1
𝛽 − 𝜇1) 𝑏̂∗𝑡 − 𝜉𝑡

= 𝑣𝑧𝑡 − 𝜉𝑡

= 𝛽𝜇1𝜒̂1
1 − 𝛽𝜌𝜇1

𝜓𝑡 +
𝛽(1 − 𝜌)(𝑘 − 1)𝜇1

1 − 𝛽𝜌𝜇1
𝜉𝑡 .
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Now apply lag operator (1 − 𝜇1𝐿) to Equation (17) to finally get

(1 − 𝜇1𝐿)𝑞𝑡 = (1 − 1
𝛽 𝐿)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛽𝜇1𝜒̂1
1 − 𝛽𝜌𝜇1

𝜓𝑡 +
𝛽(1 − 𝜌)𝑘𝜇1
1 − 𝛽𝜌𝜇1⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(∗)

𝜉𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 1 − 𝛽𝜇1
1 − 𝛽𝜌𝜇1

(1 − 𝜌𝜇1𝐿)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(∗∗)

𝜉𝑡 .

This equation shows that the equilibrium RER follows a stationary ARMA(2,1) process. Note that

the term (∗) captures the trade shock effect through the UIP deviation, and (∗∗) is for the effects
via the resource constraint.

As can be seen from this equation, the main reason that effect of trade shock has a different

impact than the financial shock is due to the second term, (∗∗), the mechanism through the re-

source constraint. Absent of this term, financial and trade shocks differ only in their coefficients

but share the same lag operator. Then the impacts of financial and trade shocks become pro-

portional to each other that only differ in their sizes but not persistences. For example, a shock

𝜀𝜓𝑡−1 will affect the left-hand-side, (1 − 𝜇1𝐿)𝑞𝑡 = 𝑞𝑡 − 𝜇1𝑞𝑡−1, in a proportional way as a shock 𝜀𝜉 𝑡−1.
Therefore, the autocorrelation of two IRFs are going to be equal. However, due to the existence

of the second them, the trade shock has another layer of affecting the left-hand-side. In specific,

a shock 𝜀𝜉 𝑡−1 has a lag operator (1 − 𝜌𝜇1𝐿) and its effect on the left-hand-side is not proportional

to the others anymore.

This can be seen by plotting IRFs using the derived equation. Using the parameter values

of the benchmark case, and also checking robustness with other values, we plot the IRFs of two

shocks in Figure C1. The result is similar to the one from our quantitative exercise, presented

in Figure 4. The calculated autocorrelations of each IRF is 0.96 (trade shock) and 0.86 (financial

shock).

Now consider a case when we shut off the effects through the budget constraint. If we force

(∗∗) = 0, the IRF of trade shock becomes much less persistence, and the autocorrelation reduces

to 0.86 (red dotted line in Figure C1).

On the other hand, shutting of (∗) term has a negligible effect. That is, its IRF coincideswith the

original case (red solid line in Figure C1). This result is consistent with our quantitative exercise

that effect of trade shock through generating the UIP deviation is small.
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Figure C1: IRFs from Analytical Solution
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Table E.6: Robustness – Model Results

Moments Data Benchmark Short Input Adj Common 𝜏 = 0 Inv Adj TE Sophisticated 𝜓

A. Targeted Moments

𝜎(Δ𝑦) 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007

𝜌 (Δ𝑐 − Δ𝑐∗, Δ𝑞) -0.10 -0.10 -0.09 -0.10 -0.11 0.28 -0.10 -0.08 0.20

𝜌 (𝑖 − 𝑖∗) 0.87 0.87 0.77 0.85 0.85 0.86 0.87 0.83 0.85

𝜌(Δ𝑦, Δ𝑦∗) 0.40 0.40 0.41 0.40 0.34 0.40 0.40 0.42 0.41

𝜌(Δ𝑑, Δ𝑑 ∗) 0.34 0.34 0.33 0.34 0.38 0.06
†

0.34 0.33 0.31

𝜌(𝑛𝑡) 0.98 0.96 0.95 0.96 0.98 0.96 0.98 0.99 0.95

𝜎(Δ𝑖𝑛𝑣∗)/𝜎(Δ𝑦∗) 2.59 2.59 2.53 2.59 2.61 2.71 2.59 2.60 2.90

𝜌 (Δ𝑛𝑡, Δ𝑞) 0.30 0.30 0.29 0.31 0.29 0.32 0.30 0.34 0.79

𝜎(𝑛𝑡)/𝜎(𝑞) 1.16 1.16 1.15 1.17 1.16 1.41 1.16 1.23 1.40

𝜌(Δ𝑡𝑜𝑡, Δ𝑞) 0.49 0.49 0.48 0.49 0.49 0.45 0.49 0.47 0.47

𝜌( 𝑥+𝑚𝑦 ) 0.97 0.98
†

0.95
†

0.98
†

0.97 0.98
†

0.98
†

0.98
†

0.98
†

𝜌(Δ 𝑥+𝑚
𝑦 , Δ𝑦) 0.32 0.49

†
0.20

†
-0.09

†
0.34 0.53

†
-0.03

†
0.44

†
0.51

†

B. Trade Elasticity

SR elasticity 0.20 0.40
†

0.37
†

0.34
†

0.34
†

0.78
†

0.40
†

0.17 1.13
†

(0.05)

LR elasticity 1.16 1.00
†

1.19
†

0.66
†

1.03
†

1.44
†

1.11
†

1.13 1.65
†

(0.25)

Adjustment 0.07 0.04
†

0.07
†

0.07 0.02
†

0.03
†

0.02
†

0.02 0.14
†

(0.02)

C1. Frequency Decomposition of RER

High frequency 0.08 0.07
†

0.10
†

0.06
†

0.06
†

0.07
†

0.06
†

0.07
†

0.09
†

Business cycle frequency 0.31 0.23
†

0.29
†

0.18
†

0.20
†

0.21
†

0.18
†

0.22
†

0.26
†

Low frequency 0.61 0.70
†

0.61
†

0.76
†

0.74
†

0.72
†

0.76
†

0.71
†

0.65
†

C2. Frequency Decomposition of NT Flows

High frequency 0.06 0.08
†

0.10
†

0.08
†

0.06
†

0.08
†

0.06
†

0.05
†

0.08
†

Business cycle frequency 0.30 0.30
†

0.35
†

0.23
†

0.24
†

0.28
†

0.22
†

0.22
†

0.32
†

Low frequency 0.64 0.62
†

0.55
†

0.69
†

0.70
†

0.64
†

0.72
†

0.73
†

0.60
†

D. Disconnect Puzzles

𝜎(𝑞) 0.10 0.08 0.09 0.15 0.10 0.09 0.16 0.17 0.04

𝜎(Δ𝑞)/𝜎(Δ𝑦) 4.24 3.48 3.9 3.24 2.90 3.12 4.14 6.13 1.81

𝜌(𝑞) 0.97 0.97 0.94 0.99 0.97 0.97 0.98 0.97 0.94

𝛽𝑓 𝑎𝑚𝑎 -1.34 0.14 0.71 -0.18 0.13 -1.07 -0.46 1.60 -0.21

𝑅2
𝑓 𝑎𝑚𝑎 0.04 0.001 0.07 0.007 0.001 0.10 0.004 0.07 0.001

𝜌(𝑞, 𝑖 − 𝑖∗) -0.30 -0.44 -0.42 -0.09 -0.33 -0.60 -0.42 -0.50 -0.47

𝜌(𝑖) 0.93 0.93 0.82 0.89 0.90 0.90 0.86 0.90 0.93

𝜎(𝑖 − 𝑖∗)/𝜎(Δ𝑞) 0.13 0.01 0.01 0.07 0.01 0.02 0.01 0.01 0.02

Notes: Superscript † denotes that the moment is not targeted during the calibration procedure. ‘Benchmark’ shows

the same results presented in Section 5. ‘Short’ shows the result of the estimation using short period samples (Section

E.2). ‘Input Adj’ shows the result of the model with reduced-form trade dynamics (Section E.3). ‘Common’ is for the

model with common shocks to trade costs (Section E.4). ‘𝜏 = 0’ is the case with no within-ROW trade cost shocks

(Section E.5). ‘Inv Adj’ is the case with investment adjustment cost (Section E.7). ‘TE’ is when we target short- and

long-run elasticities (Section E.8). ’Sophisticated 𝜓 ’ is the case of a mix of two AR(1) processes for the financial shock

(Section E.9).
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Table E.7: Robustness – Variance Decomposition

Benchmark Input Adj 𝜏 = 0 Inv Adj

Quarters P F T P F T P F T P F T

1 2.9 62.6 34.5 3.19 89.39 7.42 5.84 60.62 33.54 1.42 66.91 31.67

8 5.0 46.6 48.4 3.41 80.08 16.50 8.48 43.41 48.11 2.78 44.48 52.75

32 9.1 25.8 65.1 3.67 55.22 41.12 11.82 22.60 65.58 5.71 19.93 74.36

80 9.8 25.7 64.5 2.84 37.04 60.13 11.65 20.25 68.09 5.18 12.79 82.03

Benchmark Short Sample Common Trade Cost TE

Quarters P F T P F T P F T P F T

1 2.9 62.6 34.5 2.51 51.74 45.76 4.98 57.06 37.96 1.16 74.74 24.11

8 5.0 46.6 48.4 3.85 36.00 60.15 7.32 45.70 46.98 1.74 65.68 32.57

32 9.1 25.8 65.1 5.68 17.27 77.06 11.77 24.97 63.26 3.35 44.45 52.20

80 9.8 25.7 64.5 5.38 15.33 79.29 11.27 23.33 65.40 3.64 42.15 54.22

Notes: ‘P,’ ‘F’ and ‘T’ refer to share accounted by productivity shocks, financial shocks, and trade shocks, respectively.
‘Benchmark’ shows the same results presented in Section 5. ‘Input Adj’ shows the result of the model with reduced-

form trade dynamics (Section E.3). ‘𝜏 = 0’ is the case with no within-ROW trade cost shocks, with 𝜏 = 0 (Section

E.5). ‘Short Sample’ shows the result of the estimation using short period samples (Section E.2). ‘Common’ is for

the model with common shocks to trade costs (Section E.4). ‘TE’ is when we target short- and long-run elasciticies

(Section E.8).

Table E.8: Targeted Moments from Three Country Model

Moments Data Benchmark Three-Country Model

𝜎(Δ𝑦) 0.007 0.006 0.017

𝜌 (Δ𝑐 − Δ𝑐∗, Δ𝑞) -0.10 -0.10 0.13

𝜌 (𝑖 − 𝑖∗) 0.87 0.87 0.85

𝜌(Δ𝑦, Δ𝑦∗) 0.40 0.40 0.83

𝜌(Δ𝑑, Δ𝑑 ∗) 0.34 0.34 0.27

𝜌(𝑛𝑡) 0.98 0.96 0.98

𝜌 (Δ𝑛𝑡, Δ𝑞) 0.30 0.30 0.27

𝜎(𝑛𝑡)/𝜎(𝑞) 1.16 1.16 1.46
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H Additional Figures and Tables

Figure F.1: Gross Trade to GDP Ratio
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Notes: The figure shows the share of gross trade as a share of total output, measured by the ratio of

volume estimates of exports plus imports to GDP for each country.
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Figure F.2: Data Source Comparison
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Figure F.3: Dynamic Correlation between RER and Trade-Expenditure Ratio
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Notes: The figure presents dynamic correlations as 𝜌(Δℎ𝑞𝑡 , Δℎ𝑇𝐸𝑡 ), where 𝑞𝑡 and 𝑇𝐸𝑡 are log
of the RER and the trade-expenditure ratio, respectively. and Δℎ denotes ℎ−period difference.
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Figure F.4: Dynamic Correlation between RER and NT
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Notes: We calculate the dynamic correlations as 𝜌(Δℎ𝑞𝑡 , Δℎ𝑛𝑡𝑡 ), where 𝑞𝑡 and 𝑛𝑡𝑡 are log of

the RER and the export-import ratio, respectively. and Δℎ denotes ℎ−period difference. It

present the results for the benchmark model and alternative models: no financial shock, no

trade shock, and no trade dynamics.

Figure F.5: Counterfactual Spectrum
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Notes: Spectral analysis of counterfactual models without re-calibrating, as our goal is to use

the identified parameters from the benchmark model to perform exercises informative about

the role of each shock at different frequencies. The graph is enlarged for the range [0,1] to

show better the low and business cycle frequencies.
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Figure F.6: IRFs from Estimated AR(1) Process of the RER
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Notes: the figure presents the impulse response functions of the RER from the estimated AR(1)

processes using the data and model simulated data.
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Table F.1: Frequency Decomposition of RER – Other Countries

Country Low Business cycle High

Australia 0.60 0.32 0.08

Austria 0.63 0.29 0.07

Belgium 0.54 0.38 0.08

Canada 0.61 0.31 0.08

Chinese Taipei 0.65 0.26 0.09

Denmark 0.64 0.29 0.07

Finland 0.60 0.33 0.07

France 0.47 0.42 0.11

Germany 0.63 0.30 0.07

Greece 0.63 0.28 0.09

Hong Kong SAR 0.61 0.30 0.09

Ireland 0.39 0.43 0.18

Italy 0.64 0.27 0.09

Japan 0.62 0.30 0.08

Korea 0.67 0.25 0.08

Netherlands 0.62 0.31 0.07

New Zealand 0.52 0.36 0.12

Norway 0.58 0.32 0.10

Portugal 0.58 0.34 0.08

Singapore 0.62 0.30 0.07

Spain 0.59 0.31 0.10

Sweden 0.60 0.31 0.09

Switzerland 0.68 0.25 0.07

United Kingdom 0.58 0.33 0.09

United States 0.61 0.32 0.08

Euro area 0.41 0.45 0.14

Average (excl. Euro Area) 0.60 0.32 0.09

Notes: The table presents the share of the RER variance explained by

different frequencies for a panel of developed economies and Chinese

Taipei. We use the effective exchange rate, real, narrow indices, from

BIS.
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Table F.2: Calibrated Parameters – Alternative Models

Parameter Benchmark No Trade Shock No Financial Shock No Dynamics

B. Producer Trade Parameters

Fixed cost of new exporters 𝑓 0 0.14 0.14 0.14 0
‡

Fixed cost of incumbent exporters 𝑓 1 0.04 0.04 0.04 0
‡

Volatility of idiosyncratic productivity 𝜎𝜇 0.15 0.15 0.15 0
‡

C. Shocks, Adjustment Costs and Pricing to Market

Common productivity, volatility 𝜎𝑎𝑐 0.004 0.005 0.004 0.005

Differential productivity, volatility 𝜎𝑎𝑑 0.005 0.006 0.006 0.006

Financial shock, volatility 𝜎𝜓 0.002 0.002 0
‡

0.004

Financial shock, persistence 𝜌𝜓 0.957 0.964 0
‡

0.810

Trade shock, volatility 𝜎𝜉 0.052 0
‡

0.037 0.095

Trade shock, persistence 𝜌𝜉 0.971 0
‡

0.999 0.965

Trade shock, within-country share 𝜏 0.171 0
‡

0.282 0.089

Adjustment cost of portfolios 𝜒 0.0137 0.008 0.002 0.002

Adjustment cost of capital 𝜅 2.425 6.976 2.338 8.25

Pricing to market parameter 𝜁 0.966 0.969 1.060 1.62

Notes: The table presents the values of calibrated parameters of the benchmark and alternative models. When we

consider an alternative models, some of the parameters are set to a different value while the other parameters are all

recalibrated. Panel A is same as the baseline case presented in Table 1 for all models.
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Table F.3: Share in Counterfactual Spectrum

Data Benchmark Trade Shock Only Financial Shock Only Prod Shock Only

Low frequency 0.61 0.70 0.75 0.56 0.75

BC frequency 0.31 0.23 0.19 0.32 0.19

High frequency 0.08 0.07 0.06 0.12 0.06

Table F.4: Fama Estimates in Data

Moments Nominal Real

𝛽𝑓 𝑎𝑚𝑎 -1.15 -1.34

(0.59) (0.52)

𝑅2
𝑓 𝑎𝑚𝑎 0.02 0.04

Notes: ‘Nominal’ denotes the results of using nominal data for the

Fama regression, Δ𝑒𝑡+1 = 𝛼 + 𝛽𝐹𝑎𝑚𝑎(𝑖𝑛𝑡 − 𝑖𝑛∗𝑡 ) + 𝑢𝑡 , where 𝑒 is nominal

exchange rate, and 𝑖𝑛 is the nominal interest rate. ‘Real’ denotes the

result of using real data for the regression (8).

Table F.5: Conditional Variance Decomposition of the RER (%) – Model Without Trade Shocks

quarters = 1 8 32 80

Financial shock 93.6 88.9 74.5 74.2

Productivity shock 6.4 11.1 25.5 25.8

Notes: This model corresponds to calibration under ’No Trade Shock’

in Table F.2.
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